SimPEG.electromagnetics.static.resistivity.Simulation2DNodal#

class SimPEG.electromagnetics.static.resistivity.Simulation2DNodal(mesh, survey=None, bc_type='Robin', **kwargs)[source]#

Bases: BaseDCSimulation2D

2.5D nodal DC problem

Attributes

Mcc

Cell center inner product matrix.

MccRho

Cell center property inner product matrix.

MccRhoI

Cell center property inner product inverse matrix.

MccSigma

Cell center property inner product matrix.

MccSigmaI

Cell center property inner product inverse matrix.

Me

Edge inner product matrix.

MeI

Edge inner product inverse matrix.

MeRho

Edge property inner product matrix.

MeRhoI

Edge property inner product inverse matrix.

MeSigma

Edge property inner product matrix.

MeSigmaI

Edge property inner product inverse matrix.

Mf

Face inner product matrix.

MfI

Face inner product inverse matrix.

MfRho

Face property inner product matrix.

MfRhoI

Face property inner product inverse matrix.

MfSigma

Face property inner product matrix.

MfSigmaI

Face property inner product inverse matrix.

Mn

Node inner product matrix.

MnI

Node inner product inverse matrix.

MnRho

Node property inner product matrix.

MnRhoI

Node property inner product inverse matrix.

MnSigma

Node property inner product matrix.

MnSigmaI

Node property inner product inverse matrix.

bc_type

Type of boundary condition to use for simulation.

clean_on_model_update

A list of solver objects to clean when the model is updated

counter

SimPEG Counter object to store iterations and run-times.

deleteTheseOnModelUpdate

matrices to be deleted if the model for conductivity/resistivity is updated

fix_Jmatrix

Whether to fix the sensitivity matrix between iterations.

mesh

Mesh for the simulation.

model

The inversion model.

needs_model

True if a model is necessary

nky

Number of kys to use in wavenumber space.

rho

Electrical resistivity (ohm m) physical property model.

rhoDeriv

Derivative of Electrical resistivity (Ohm m) wrt the model.

rhoMap

Mapping of the inversion model to Electrical resistivity (Ohm m).

sensitivity_path

Path to directory where sensitivity file is stored.

sigma

Electrical conductivity (s/m) physical property model.

sigmaDeriv

Derivative of Electrical conductivity (S/m) wrt the model.

sigmaMap

Mapping of the inversion model to Electrical conductivity (S/m).

solver

Numerical solver used in the forward simulation.

solver_opts

Solver-specific parameters.

storeJ

Whether to store the sensitivity matrix

surface_faces

Array defining which faces to interpret as surfaces of Neumann boundary

survey

The DC survey object.

verbose

Verbose progress printout.

MccI

Vol

Methods

Jtvec(m, v[, f])

Compute adjoint sensitivity matrix (J^T) and vector (v) product.

Jtvec_approx(m, v[, f])

Approximation of the Jacobian transpose times a vector for the model provided.

Jvec(m, v[, f])

Compute sensitivity matrix (J) and vector (v) product.

Jvec_approx(m, v[, f])

Approximation of the Jacobian times a vector for the model provided.

MccRhoDeriv(u[, v, adjoint])

Derivative of MccProperty with respect to the model.

MccRhoIDeriv(u[, v, adjoint])

Derivative of MccPropertyI with respect to the model.

MccSigmaDeriv(u[, v, adjoint])

Derivative of MccProperty with respect to the model.

MccSigmaIDeriv(u[, v, adjoint])

Derivative of MccPropertyI with respect to the model.

MeRhoDeriv(u[, v, adjoint])

Derivative of MeProperty with respect to the model.

MeRhoIDeriv(u[, v, adjoint])

Derivative of MePropertyI with respect to the model.

MeSigmaDeriv(u[, v, adjoint])

Derivative of MeProperty with respect to the model.

MeSigmaIDeriv(u[, v, adjoint])

Derivative of MePropertyI with respect to the model.

MfRhoDeriv(u[, v, adjoint])

Derivative of MfProperty with respect to the model.

MfRhoIDeriv(u[, v, adjoint])

I Derivative of MfPropertyI with respect to the model.

MfSigmaDeriv(u[, v, adjoint])

Derivative of MfProperty with respect to the model.

MfSigmaIDeriv(u[, v, adjoint])

I Derivative of MfPropertyI with respect to the model.

MnRhoDeriv(u[, v, adjoint])

Derivative of MnProperty with respect to the model.

MnRhoIDeriv(u[, v, adjoint])

Derivative of MnPropertyI with respect to the model.

MnSigmaDeriv(u[, v, adjoint])

Derivative of MnProperty with respect to the model.

MnSigmaIDeriv(u[, v, adjoint])

Derivative of MnPropertyI with respect to the model.

dpred([m, f])

Project fields to receiver locations :param Fields u: fields object :rtype: numpy.ndarray :return: data

fields([m])

Return the computed geophysical fields for the model provided.

fieldsPair

alias of Fields2DNodal

fieldsPair_fwd

alias of Fields3DNodal

getA(ky)

Make the A matrix for the cell centered DC resistivity problem A = D MfRhoI G

getJ(m[, f])

Generate Full sensitivity matrix

getRHS(ky)

RHS for the DC problem q

getRHSDeriv(ky, src, v[, adjoint])

Derivative of the right hand side with respect to the model

getSourceTerm(ky)

takes concept of source and turns it into a matrix

make_synthetic_data(m[, relative_error, ...])

Make synthetic data for the model and Gaussian noise provided.

residual(m, dobs[, f])

The data residual.

fields_to_space

getADeriv

setBC

Galleries and Tutorials using SimPEG.electromagnetics.static.resistivity.Simulation2DNodal#

Parametric DC inversion with Dipole Dipole array

Parametric DC inversion with Dipole Dipole array

2.5D Forward Simulation of a DCIP Line

2.5D Forward Simulation of a DCIP Line

2.5D DC Resistivity and IP Least-Squares Inversion

2.5D DC Resistivity and IP Least-Squares Inversion

DC Resistivity Forward Simulation in 2.5D

DC Resistivity Forward Simulation in 2.5D

2.5D DC Resistivity Least-Squares Inversion

2.5D DC Resistivity Least-Squares Inversion

2.5D DC Resistivity Inversion with Sparse Norms

2.5D DC Resistivity Inversion with Sparse Norms