FLOW: Richards: 1D: Celia1990

There are two different forms of Richards equation that differ on how they deal with the non-linearity in the time-stepping term.

The most fundamental form, referred to as the ‘mixed’-form of Richards Equation Celia1990

\[\frac{\partial \theta(\psi)}{\partial t} - \nabla \cdot k(\psi) \nabla \psi - \frac{\partial k(\psi)}{\partial z} = 0 \quad \psi \in \Omega\]

where \(\theta\) is water content, and \(\psi\) is pressure head. This formulation of Richards equation is called the ‘mixed’-form because the equation is parameterized in \(\psi\) but the time-stepping is in terms of \(\theta\).

As noted in Celia1990 the ‘head’-based form of Richards equation can be written in the continuous form as:

\[\frac{\partial \theta}{\partial \psi} \frac{\partial \psi}{\partial t} - \nabla \cdot k(\psi) \nabla \psi - \frac{\partial k(\psi)}{\partial z} = 0 \quad \psi \in \Omega\]

However, it can be shown that this does not conserve mass in the discrete formulation.

Here we reproduce the results from Celia1990 demonstrating the head-based formulation and the mixed-formulation.



/Users/lindseyjh/git/simpeg/simpeg/examples/10-flow/plot_richards_celia1990.py:107: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure.

import matplotlib.pyplot as plt
import numpy as np

from SimPEG import Mesh, Maps
from SimPEG.FLOW import Richards

def run(plotIt=True):

    M = Mesh.TensorMesh([np.ones(40)])
    params = Richards.Empirical.HaverkampParams().celia1990
    k_fun, theta_fun = Richards.Empirical.haverkamp(M, **params)
    k_fun.KsMap = Maps.IdentityMap(nP=M.nC)

    bc = np.array([-61.5, -20.7])
    h = np.zeros(M.nC) + bc[0]

    def getFields(timeStep, method):
        timeSteps = np.ones(int(360/timeStep))*timeStep
        prob = Richards.RichardsProblem(
            boundary_conditions=bc, initial_conditions=h,
            do_newton=False, method=method
        prob.timeSteps = timeSteps
        return prob.fields(params['Ks'] * np.ones(M.nC))

    Hs_M010 = getFields(10, 'mixed')
    Hs_M030 = getFields(30, 'mixed')
    Hs_M120 = getFields(120, 'mixed')
    Hs_H010 = getFields(10, 'head')
    Hs_H030 = getFields(30, 'head')
    Hs_H120 = getFields(120, 'head')

    if not plotIt:
    plt.figure(figsize=(13, 5))
    plt.plot(40-M.gridCC, Hs_M010[-1], 'b-')
    plt.plot(40-M.gridCC, Hs_M030[-1], 'r-')
    plt.plot(40-M.gridCC, Hs_M120[-1], 'k-')
    plt.ylim([-70, -10])
    plt.title('Mixed Method')
    plt.xlabel('Depth, cm')
    plt.ylabel('Pressure Head, cm')
        ('$\Delta t$ = 10 sec', '$\Delta t$ = 30 sec', '$\Delta t$ = 120 sec')
    plt.plot(40-M.gridCC, Hs_H010[-1], 'b-')
    plt.plot(40-M.gridCC, Hs_H030[-1], 'r-')
    plt.plot(40-M.gridCC, Hs_H120[-1], 'k-')
    plt.ylim([-70, -10])
    plt.title('Head-Based Method')
    plt.xlabel('Depth, cm')
    plt.ylabel('Pressure Head, cm')
        '$\Delta t$ = 10 sec', '$\Delta t$ = 30 sec', '$\Delta t$ = 120 sec'

if __name__ == '__main__':

Total running time of the script: ( 0 minutes 4.841 seconds)

Gallery generated by Sphinx-Gallery