EM: Schenkel and Morrison Casing ModelΒΆ

Here we create and run a FDEM forward simulation to calculate the vertical current inside a steel-cased. The model is based on the Schenkel and Morrison Casing Model, and the results are used in a 2016 SEG abstract by Yang et al.

Schenkel, C.J., and H.F. Morrison, 1990, Effects of well casing on
potential field measurements using downhole current sources:
Geophysical prospecting, 38, 663-686.

The model consists of:

  • Air: Conductivity 1e-8 S/m, above z = 0
  • Background: conductivity 1e-2 S/m, below z = 0
  • Casing: conductivity 1e6 S/m
    • 300m long
    • radius of 0.1m
    • thickness of 6e-3m

Inside the casing, we take the same conductivity as the background.

We are using an EM code to simulate DC, so we use frequency low enough that the skin depth inside the casing is longer than the casing length (f = 1e-6 Hz). The plot produced is of the current inside the casing.

These results are shown in the SEG abstract by Yang et al., 2016: 3D DC resistivity modeling of steel casing for reservoir monitoring using equivalent resistor network. The solver used to produce these results and achieve the CPU time of ~30s is Mumps, which was installed using pymatsolver

This example is on figshare: https://dx.doi.org/10.6084/m9.figshare.3126961.v1

If you would use this example for a code comparison, or build upon it, a citation would be much appreciated!

(Source code)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
from __future__ import print_function
import matplotlib.pylab as plt
import numpy as np
from SimPEG import Mesh, Maps, Utils
from SimPEG.EM import FDEM
import time

try:
    from pymatsolver import Pardiso as Solver
except Exception:
    from SimPEG import SolverLU as Solver


def run(plotIt=True):
    """
        EM: Schenkel and Morrison Casing Model
        ======================================

        Here we create and run a FDEM forward simulation to calculate the
        vertical current inside a steel-cased. The model is based on the
        Schenkel and Morrison Casing Model, and the results are used in a 2016
        SEG abstract by Yang et al.

        .. code-block:: text

            Schenkel, C.J., and H.F. Morrison, 1990, Effects of well casing on
            potential field measurements using downhole current sources:
            Geophysical prospecting, 38, 663-686.


        The model consists of:

        - Air: Conductivity 1e-8 S/m, above z = 0
        - Background: conductivity 1e-2 S/m, below z = 0
        - Casing: conductivity 1e6 S/m
            - 300m long
            - radius of 0.1m
            - thickness of 6e-3m

        Inside the casing, we take the same conductivity as the background.

        We are using an EM code to simulate DC, so we use frequency low enough
        that the skin depth inside the casing is longer than the casing length
        (f = 1e-6 Hz). The plot produced is of the current inside the casing.

        These results are shown in the SEG abstract by Yang et al., 2016: 3D DC
        resistivity modeling of steel casing for reservoir monitoring using
        equivalent resistor network. The solver used to produce these results
        and achieve the CPU time of ~30s is Mumps, which was installed using
        pymatsolver_

        .. _pymatsolver: https://github.com/rowanc1/pymatsolver

        This example is on figshare:
        https://dx.doi.org/10.6084/m9.figshare.3126961.v1

        If you would use this example for a code comparison, or build upon it,
        a citation would be much appreciated!

    """

    # ------------------ MODEL ------------------
    sigmaair = 1e-8  # air
    sigmaback = 1e-2  # background
    sigmacasing = 1e6  # casing
    sigmainside = sigmaback  # inside the casing

    casing_t = 0.006  # 1cm thickness
    casing_l = 300  # length of the casing

    casing_r = 0.1
    casing_a = casing_r - casing_t/2.  # inner radius
    casing_b = casing_r + casing_t/2.  # outer radius
    casing_z = np.r_[-casing_l, 0.]

    # ------------------ SURVEY PARAMETERS ------------------
    freqs = np.r_[1e-6]  # [1e-1, 1, 5] # frequencies
    dsz = -300  # down-hole z source location
    src_loc = np.r_[0., 0., dsz]
    inf_loc = np.r_[0., 0., 1e4]

    print('Skin Depth: ', [(500./np.sqrt(sigmaback*_)) for _ in freqs])

    # ------------------ MESH ------------------
    # fine cells near well bore
    csx1, csx2 = 2e-3, 60.
    pfx1, pfx2 = 1.3, 1.3
    ncx1 = np.ceil(casing_b/csx1+2)

    # pad nicely to second cell size
    npadx1 = np.floor(np.log(csx2/csx1) / np.log(pfx1))
    hx1a = Utils.meshTensor([(csx1, ncx1)])
    hx1b = Utils.meshTensor([(csx1, npadx1, pfx1)])
    dx1 = sum(hx1a)+sum(hx1b)
    dx1 = np.floor(dx1/csx2)
    hx1b *= (dx1*csx2 - sum(hx1a))/sum(hx1b)

    # second chunk of mesh
    dx2 = 300.  # uniform mesh out to here
    ncx2 = np.ceil((dx2 - dx1)/csx2)
    npadx2 = 45
    hx2a = Utils.meshTensor([(csx2, ncx2)])
    hx2b = Utils.meshTensor([(csx2, npadx2, pfx2)])
    hx = np.hstack([hx1a, hx1b, hx2a, hx2b])

    # z-direction
    csz = 0.05
    nza = 10
    # cell size, number of core cells, number of padding cells in the
    # x-direction
    ncz, npadzu, npadzd = np.int(np.ceil(np.diff(casing_z)[0]/csz))+10, 68, 68
    # vector of cell widths in the z-direction
    hz = Utils.meshTensor([(csz, npadzd, -1.3), (csz, ncz),
                          (csz, npadzu, 1.3)])

    # Mesh
    mesh = Mesh.CylMesh([hx, 1., hz], [0., 0., -np.sum(hz[:npadzu+ncz-nza])])

    print('Mesh Extent xmax: {0:f},: zmin: {1:f}, zmax: {2:f}'.format(
        mesh.vectorCCx.max(), mesh.vectorCCz.min(), mesh.vectorCCz.max()
    ))
    print('Number of cells', mesh.nC)

    if plotIt is True:
        fig, ax = plt.subplots(1, 1, figsize=(6, 4))
        ax.set_title('Simulation Mesh')
        mesh.plotGrid(ax=ax)

    # Put the model on the mesh
    sigWholespace = sigmaback*np.ones((mesh.nC))

    sigBack = sigWholespace.copy()
    sigBack[mesh.gridCC[:, 2] > 0.] = sigmaair

    sigCasing = sigBack.copy()
    iCasingZ = ((mesh.gridCC[:, 2] <= casing_z[1]) &
                (mesh.gridCC[:, 2] >= casing_z[0]))
    iCasingX = ((mesh.gridCC[:, 0] >= casing_a) &
                (mesh.gridCC[:, 0] <= casing_b))
    iCasing = iCasingX & iCasingZ
    sigCasing[iCasing] = sigmacasing

    if plotIt is True:
        # plotting parameters
        xlim = np.r_[0., 0.2]
        zlim = np.r_[-350., 10.]
        clim_sig = np.r_[-8, 6]

        # plot models
        fig, ax = plt.subplots(1, 1, figsize=(4, 4))

        f = plt.colorbar(mesh.plotImage(np.log10(sigCasing), ax=ax)[0], ax=ax)
        ax.grid(which='both')
        ax.set_title('Log_10 (Sigma)')
        ax.set_xlim(xlim)
        ax.set_ylim(zlim)
        f.set_clim(clim_sig)

    # -------------- Sources --------------------
    # Define Custom Current Sources

    # surface source
    sg_x = np.zeros(mesh.vnF[0], dtype=complex)
    sg_y = np.zeros(mesh.vnF[1], dtype=complex)
    sg_z = np.zeros(mesh.vnF[2], dtype=complex)

    nza = 2  # put the wire two cells above the surface

    # vertically directed wire
    # hook it up to casing at the surface
    sgv_indx = ((mesh.gridFz[:, 0] > casing_a) &
                (mesh.gridFz[:, 0] < casing_a + csx1))
    sgv_indz = ((mesh.gridFz[:, 2] <= +csz*nza) &
                (mesh.gridFz[:, 2] >= -csz*2))
    sgv_ind = sgv_indx & sgv_indz
    sg_z[sgv_ind] = -1.

    # horizontally directed wire
    sgh_indx = ((mesh.gridFx[:, 0] > casing_a) &
                (mesh.gridFx[:, 0] <= inf_loc[2]))
    sgh_indz = ((mesh.gridFx[:, 2] > csz*(nza-0.5)) &
                (mesh.gridFx[:, 2] < csz*(nza+0.5)))
    sgh_ind = sgh_indx & sgh_indz
    sg_x[sgh_ind] = -1.

    # hook it up to casing at the surface
    sgv2_indx = ((mesh.gridFz[:, 0] >= mesh.gridFx[sgh_ind, 0].max()) &
                 (mesh.gridFz[:, 0] <= inf_loc[2]*1.2))
    sgv2_indz = ((mesh.gridFz[:, 2] <= +csz*nza) &
                 (mesh.gridFz[:, 2] >= -csz*2))
    sgv2_ind = sgv2_indx & sgv2_indz
    sg_z[sgv2_ind] = 1.

    # assemble the source
    sg = np.hstack([sg_x, sg_y, sg_z])
    sg_p = [FDEM.Src.RawVec_e([], _, sg/mesh.area) for _ in freqs]

    # downhole source
    dg_x = np.zeros(mesh.vnF[0], dtype=complex)
    dg_y = np.zeros(mesh.vnF[1], dtype=complex)
    dg_z = np.zeros(mesh.vnF[2], dtype=complex)

    # vertically directed wire
    dgv_indx = (mesh.gridFz[:, 0] < csx1)  # go through the center of the well
    dgv_indz = ((mesh.gridFz[:, 2] <= +csz*nza) &
                (mesh.gridFz[:, 2] > dsz + csz/2.))
    dgv_ind = dgv_indx & dgv_indz
    dg_z[dgv_ind] = -1.

    # couple to the casing downhole
    dgh_indx = mesh.gridFx[:, 0] < casing_a + csx1
    dgh_indz = (mesh.gridFx[:, 2] < dsz + csz) & (mesh.gridFx[:, 2] >= dsz)
    dgh_ind = dgh_indx & dgh_indz
    dg_x[dgh_ind] = 1.

    # horizontal part at surface
    dgh2_indx = mesh.gridFx[:, 0] <= inf_loc[2]*1.2
    dgh2_indz = sgh_indz.copy()
    dgh2_ind = dgh2_indx & dgh2_indz
    dg_x[dgh2_ind] = -1.

    # vertical part at surface
    dgv2_ind = sgv2_ind.copy()
    dg_z[dgv2_ind] = 1.

    # assemble the source
    dg = np.hstack([dg_x, dg_y, dg_z])
    dg_p = [FDEM.Src.RawVec_e([], _, dg/mesh.area) for _ in freqs]

    # ------------ Problem and Survey ---------------
    survey = FDEM.Survey(sg_p + dg_p)
    problem = FDEM.Problem3D_h(
        mesh,
        sigmaMap=Maps.IdentityMap(mesh),
        Solver=Solver
    )
    problem.pair(survey)

    # ------------- Solve ---------------------------
    t0 = time.time()
    fieldsCasing = problem.fields(sigCasing)
    print('Time to solve 2 sources', time.time() - t0)

    # Plot current

    # current density
    jn0 = fieldsCasing[dg_p, 'j']
    jn1 = fieldsCasing[sg_p, 'j']

    # current
    in0 = [mesh.area*fieldsCasing[dg_p, 'j'][:, i] for i in range(len(freqs))]
    in1 = [mesh.area*fieldsCasing[sg_p, 'j'][:, i] for i in range(len(freqs))]

    in0 = np.vstack(in0).T
    in1 = np.vstack(in1).T

    # integrate to get z-current inside casing
    inds_inx = ((mesh.gridFz[:, 0] >= casing_a) &
                (mesh.gridFz[:, 0] <= casing_b))
    inds_inz = (mesh.gridFz[:, 2] >= dsz) & (mesh.gridFz[:, 2] <= 0)
    inds_fz = inds_inx & inds_inz

    indsx = [False]*mesh.nFx
    inds = list(indsx) + list(inds_fz)

    in0_in = in0[np.r_[inds]]
    in1_in = in1[np.r_[inds]]
    z_in = mesh.gridFz[inds_fz, 2]

    in0_in = in0_in.reshape([in0_in.shape[0]//3, 3])
    in1_in = in1_in.reshape([in1_in.shape[0]//3, 3])
    z_in = z_in.reshape([z_in.shape[0]//3, 3])

    I0 = in0_in.sum(1).real
    I1 = in1_in.sum(1).real
    z_in = z_in[:, 0]

    if plotIt is True:
        fig, ax = plt.subplots(1, 2, figsize=(12, 4))

        ax[0].plot(z_in, np.absolute(I0), z_in, np.absolute(I1))
        ax[0].legend(['top casing', 'bottom casing'], loc='best')
        ax[0].set_title('Magnitude of Vertical Current in Casing')

        ax[1].semilogy(z_in, np.absolute(I0), z_in, np.absolute(I1))
        ax[1].legend(['top casing', 'bottom casing'], loc='best')
        ax[1].set_title('Magnitude of Vertical Current in Casing')
        ax[1].set_ylim([1e-2, 1.])


if __name__ == '__main__':
    run()
    plt.show()