# PF: Magnetic: Inversion LinearΒΆ

Create a synthetic block model and invert with a compact norm

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 import matplotlib.pyplot as plt import numpy as np from SimPEG import Mesh from SimPEG import Utils from SimPEG import Maps from SimPEG import Regularization from SimPEG import DataMisfit from SimPEG import Optimization from SimPEG import InvProblem from SimPEG import Directives from SimPEG import Inversion from SimPEG import PF def run(plotIt=True): """ PF: Magnetic: Inversion Linear =============================== Create a synthetic block model and invert with a compact norm """ # Define the inducing field parameter H0 = (50000, 90, 0) # Create a mesh dx = 5. hxind = [(dx, 5, -1.3), (dx, 10), (dx, 5, 1.3)] hyind = [(dx, 5, -1.3), (dx, 10), (dx, 5, 1.3)] hzind = [(dx, 5, -1.3), (dx, 10)] mesh = Mesh.TensorMesh([hxind, hyind, hzind], 'CCC') # Get index of the center midx = int(mesh.nCx/2) midy = int(mesh.nCy/2) # Lets create a simple Gaussian topo and set the active cells [xx, yy] = np.meshgrid(mesh.vectorNx, mesh.vectorNy) zz = -np.exp((xx**2 + yy**2) / 75**2) + mesh.vectorNz[-1] # We would usually load a topofile topo = np.c_[Utils.mkvc(xx), Utils.mkvc(yy), Utils.mkvc(zz)] # Go from topo to actv cells actv = Utils.surface2ind_topo(mesh, topo, 'N') actv = np.asarray([inds for inds, elem in enumerate(actv, 1) if elem], dtype=int) - 1 # Create active map to go from reduce space to full actvMap = Maps.InjectActiveCells(mesh, actv, -100) nC = len(actv) # Create and array of observation points xr = np.linspace(-20., 20., 20) yr = np.linspace(-20., 20., 20) X, Y = np.meshgrid(xr, yr) # Move the observation points 5m above the topo Z = -np.exp((X**2 + Y**2) / 75**2) + mesh.vectorNz[-1] + 5. # Create a MAGsurvey rxLoc = np.c_[Utils.mkvc(X.T), Utils.mkvc(Y.T), Utils.mkvc(Z.T)] rxLoc = PF.BaseMag.RxObs(rxLoc) srcField = PF.BaseMag.SrcField([rxLoc], param=H0) survey = PF.BaseMag.LinearSurvey(srcField) # We can now create a susceptibility model and generate data # Here a simple block in half-space model = np.zeros((mesh.nCx, mesh.nCy, mesh.nCz)) model[(midx-2):(midx+2), (midy-2):(midy+2), -6:-2] = 0.02 model = Utils.mkvc(model) model = model[actv] # Create active map to go from reduce set to full actvMap = Maps.InjectActiveCells(mesh, actv, -100) # Creat reduced identity map idenMap = Maps.IdentityMap(nP=nC) # Create the forward model operator prob = PF.Magnetics.MagneticIntegral(mesh, chiMap=idenMap, actInd=actv) # Pair the survey and problem survey.pair(prob) # Compute linear forward operator and compute some data d = prob.fields(model) # Add noise and uncertainties # We add some random Gaussian noise (1nT) data = d + np.random.randn(len(d)) wd = np.ones(len(data))*1. # Assign flat uncertainties survey.dobs = data survey.std = wd survey.mtrue = model # Create sensitivity weights from our linear forward operator rxLoc = survey.srcField.rxList[0].locs wr = np.sum(prob.G**2., axis=0)**0.5 wr = (wr/np.max(wr)) # Create a regularization reg = Regularization.Sparse(mesh, indActive=actv, mapping=idenMap) reg.cell_weights = wr # Data misfit function dmis = DataMisfit.l2_DataMisfit(survey) dmis.Wd = 1/wd # Add directives to the inversion opt = Optimization.ProjectedGNCG(maxIter=100, lower=0., upper=1., maxIterLS=20, maxIterCG=10, tolCG=1e-3) invProb = InvProblem.BaseInvProblem(dmis, reg, opt) betaest = Directives.BetaEstimate_ByEig() # Here is where the norms are applied # Use pick a treshold parameter empirically based on the distribution of # model parameters IRLS = Directives.Update_IRLS(norms=([0, 1, 1, 1]), eps=(5e-4, 5e-4), f_min_change=1e-3, minGNiter=3) update_Jacobi = Directives.Update_lin_PreCond() inv = Inversion.BaseInversion(invProb, directiveList=[IRLS, betaest, update_Jacobi]) # Run the inversion m0 = np.ones(nC)*1e-4 # Starting model mrec = inv.run(m0) if plotIt: # Here is the recovered susceptibility model ypanel = midx zpanel = -5 m_l2 = actvMap * reg.l2model m_l2[m_l2 == -100] = np.nan m_lp = actvMap * mrec m_lp[m_lp == -100] = np.nan m_true = actvMap * model m_true[m_true == -100] = np.nan # Plot the data PF.Magnetics.plot_obs_2D(rxLoc, d=d) plt.figure() # Plot L2 model ax = plt.subplot(321) mesh.plotSlice(m_l2, ax=ax, normal='Z', ind=zpanel, grid=True, clim=(model.min(), model.max())) plt.plot(([mesh.vectorCCx[0], mesh.vectorCCx[-1]]), ([mesh.vectorCCy[ypanel], mesh.vectorCCy[ypanel]]), color='w') plt.title('Plan l2-model.') plt.gca().set_aspect('equal') plt.ylabel('y') ax.xaxis.set_visible(False) plt.gca().set_aspect('equal', adjustable='box') # Vertica section ax = plt.subplot(322) mesh.plotSlice(m_l2, ax=ax, normal='Y', ind=midx, grid=True, clim=(model.min(), model.max())) plt.plot(([mesh.vectorCCx[0], mesh.vectorCCx[-1]]), ([mesh.vectorCCz[zpanel], mesh.vectorCCz[zpanel]]), color='w') plt.title('E-W l2-model.') plt.gca().set_aspect('equal') ax.xaxis.set_visible(False) plt.ylabel('z') plt.gca().set_aspect('equal', adjustable='box') # Plot Lp model ax = plt.subplot(323) mesh.plotSlice(m_lp, ax=ax, normal='Z', ind=zpanel, grid=True, clim=(model.min(), model.max())) plt.plot(([mesh.vectorCCx[0], mesh.vectorCCx[-1]]), ([mesh.vectorCCy[ypanel], mesh.vectorCCy[ypanel]]), color='w') plt.title('Plan lp-model.') plt.gca().set_aspect('equal') ax.xaxis.set_visible(False) plt.ylabel('y') plt.gca().set_aspect('equal', adjustable='box') # Vertical section ax = plt.subplot(324) mesh.plotSlice(m_lp, ax=ax, normal='Y', ind=midx, grid=True, clim=(model.min(), model.max())) plt.plot(([mesh.vectorCCx[0], mesh.vectorCCx[-1]]), ([mesh.vectorCCz[zpanel], mesh.vectorCCz[zpanel]]), color='w') plt.title('E-W lp-model.') plt.gca().set_aspect('equal') ax.xaxis.set_visible(False) plt.ylabel('z') plt.gca().set_aspect('equal', adjustable='box') # Plot True model ax = plt.subplot(325) mesh.plotSlice(m_true, ax=ax, normal='Z', ind=zpanel, grid=True, clim=(model.min(), model.max())) plt.plot(([mesh.vectorCCx[0], mesh.vectorCCx[-1]]), ([mesh.vectorCCy[ypanel], mesh.vectorCCy[ypanel]]), color='w') plt.title('Plan true model.') plt.gca().set_aspect('equal') plt.xlabel('x') plt.ylabel('y') plt.gca().set_aspect('equal', adjustable='box') # Vertical section ax = plt.subplot(326) mesh.plotSlice(m_true, ax=ax, normal='Y', ind=midx, grid=True, clim=(model.min(), model.max())) plt.plot(([mesh.vectorCCx[0], mesh.vectorCCx[-1]]), ([mesh.vectorCCz[zpanel], mesh.vectorCCz[zpanel]]), color='w') plt.title('E-W true model.') plt.gca().set_aspect('equal') plt.xlabel('x') plt.ylabel('z') plt.gca().set_aspect('equal', adjustable='box') if __name__ == '__main__': run() plt.show()