class SimPEG.electromagnetics.natural_source.Simulation3DPrimarySecondary(mesh, survey=None, sigmaPrimary=None, **kwargs)[source]#

Bases: Simulation3DElectricField

A NSEM problem solving a e formulation and a primary/secondary fields decomposition.

By eliminating the magnetic flux density using

\[\mathbf{b} = \frac{1}{i \omega} \left(-\mathbf{C} \mathbf{e} \right)\]

we can write Maxwell’s equations as a second order system in \(\mathbf{e}\) only:

\[\left[ \mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^f} \mathbf{C} + i \omega \mathbf{M_{\sigma}^e} \right] \mathbf{e}_{s} = i \omega \mathbf{M_{\sigma_{p}}^e} \mathbf{e}_{p}\]

which we solve for \(\mathbf{e_s}\). The total field \(\mathbf{e} = \mathbf{e_p} + \mathbf{e_s}\).

The primary field is estimated from a background model (commonly as a 1D model).



A background model, use for the calculation of the primary fields.

Galleries and Tutorials using SimPEG.electromagnetics.natural_source.Simulation3DPrimarySecondary#

MT: 3D: Forward

MT: 3D: Forward