# Sparse Inversion with Iteratively Re-Weighted Least-Squares#

Least-squares inversion produces smooth models which may not be an accurate representation of the true model. Here we demonstrate the basics of inverting for sparse and/or blocky models. Here, we used the iteratively reweighted least-squares approach. For this tutorial, we focus on the following:

• Defining the forward problem

• Defining the inverse problem (data misfit, regularization, optimization)

• Defining the paramters for the IRLS algorithm

• Specifying directives for the inversion

• Recovering a set of model parameters which explains the observations

import numpy as np
import matplotlib.pyplot as plt

from discretize import TensorMesh

from SimPEG import (
simulation,
maps,
data_misfit,
directives,
optimization,
regularization,
inverse_problem,
inversion,
)

# sphinx_gallery_thumbnail_number = 3


## Defining the Model and Mapping#

Here we generate a synthetic model and a mappig which goes from the model space to the row space of our linear operator.

nParam = 100  # Number of model paramters

# A 1D mesh is used to define the row-space of the linear operator.
mesh = TensorMesh([nParam])

# Creating the true model
true_model = np.zeros(mesh.nC)
true_model[mesh.cell_centers_x > 0.3] = 1.0
true_model[mesh.cell_centers_x > 0.45] = -0.5
true_model[mesh.cell_centers_x > 0.6] = 0

# Mapping from the model space to the row space of the linear operator
model_map = maps.IdentityMap(mesh)

# Plotting the true model
fig = plt.figure(figsize=(8, 5))
ax.plot(mesh.cell_centers_x, true_model, "b-")
ax.set_ylim([-2, 2]) (-2.0, 2.0)


## Defining the Linear Operator#

Here we define the linear operator with dimensions (nData, nParam). In practive, you may have a problem-specific linear operator which you would like to construct or load here.

# Number of data observations (rows)
nData = 20

# Create the linear operator for the tutorial. The columns of the linear operator
# represents a set of decaying and oscillating functions.
jk = np.linspace(1.0, 60.0, nData)
p = -0.25
q = 0.25

def g(k):
return np.exp(p * jk[k] * mesh.cell_centers_x) * np.cos(
np.pi * q * jk[k] * mesh.cell_centers_x
)

G = np.empty((nData, nParam))

for i in range(nData):
G[i, :] = g(i)

# Plot the columns of G
fig = plt.figure(figsize=(8, 5))
for i in range(G.shape):
ax.plot(G[i, :])

ax.set_title("Columns of matrix G") Text(0.5, 1.0, 'Columns of matrix G')


## Defining the Simulation#

The simulation defines the relationship between the model parameters and predicted data.

sim = simulation.LinearSimulation(mesh, G=G, model_map=model_map)


## Predict Synthetic Data#

Here, we use the true model to create synthetic data which we will subsequently invert.

# Standard deviation of Gaussian noise being added
std = 0.02
np.random.seed(1)

# Create a SimPEG data object


## Define the Inverse Problem#

The inverse problem is defined by 3 things:

1. Data Misfit: a measure of how well our recovered model explains the field data

2. Regularization: constraints placed on the recovered model and a priori information

3. Optimization: the numerical approach used to solve the inverse problem

# Define the data misfit. Here the data misfit is the L2 norm of the weighted
# residual between the observed data and the data predicted for a given model.
# Within the data misfit, the residual between predicted and observed data are
# normalized by the data's standard deviation.
dmis = data_misfit.L2DataMisfit(simulation=sim, data=data_obj)

# Define the regularization (model objective function). Here, 'p' defines the
# the norm of the smallness term and 'q' defines the norm of the smoothness
# term.
reg = regularization.Sparse(mesh, mapping=model_map)
reg.reference_model = np.zeros(nParam)
p = 0.0
q = 0.0
reg.norms = [p, q]

# Define how the optimization problem is solved.
opt = optimization.ProjectedGNCG(
maxIter=100, lower=-2.0, upper=2.0, maxIterLS=20, maxIterCG=30, tolCG=1e-4
)

# Here we define the inverse problem that is to be solved
inv_prob = inverse_problem.BaseInvProblem(dmis, reg, opt)


## Define Inversion Directives#

Here we define any directiveas that are carried out during the inversion. This includes the cooling schedule for the trade-off parameter (beta), stopping criteria for the inversion and saving inversion results at each iteration.

# Add sensitivity weights but don't update at each beta

# Reach target misfit for L2 solution, then use IRLS until model stops changing.
IRLS = directives.Update_IRLS(max_irls_iterations=40, minGNiter=1, f_min_change=1e-4)

# Defining a starting value for the trade-off parameter (beta) between the data
# misfit and the regularization.
starting_beta = directives.BetaEstimate_ByEig(beta0_ratio=1e0)

# Update the preconditionner
update_Jacobi = directives.UpdatePreconditioner()

# Save output at each iteration
saveDict = directives.SaveOutputEveryIteration(save_txt=False)

# Define the directives as a list
directives_list = [sensitivity_weights, IRLS, starting_beta, update_Jacobi, saveDict]

/home/vsts/work/1/s/tutorials/02-linear_inversion/plot_inv_2_inversion_irls.py:175: UserWarning:

'everyIter' property is deprecated and will be removed in SimPEG 0.20.0.Please use 'every_iteration'.


## Setting a Starting Model and Running the Inversion#

To define the inversion object, we need to define the inversion problem and the set of directives. We can then run the inversion.

# Here we combine the inverse problem and the set of directives
inv = inversion.BaseInversion(inv_prob, directives_list)

# Starting model
starting_model = 1e-4 * np.ones(nParam)

# Run inversion
recovered_model = inv.run(starting_model)

                    SimPEG.InvProblem is setting bfgsH0 to the inverse of the eval2Deriv.
***Done using the default solver Pardiso and no solver_opts.***

model has any nan: 0
=============================== Projected GNCG ===============================
#     beta     phi_d     phi_m       f      |proj(x-g)-x|  LS    Comment
-----------------------------------------------------------------------------
x0 has any nan: 0
0  1.67e+06  1.88e+03  5.03e-10  1.88e+03    1.99e+01      0
1  8.34e+05  9.46e+02  1.99e-04  1.11e+03    1.89e+01      0
2  4.17e+05  6.46e+02  4.59e-04  8.37e+02    1.82e+01      0   Skip BFGS
3  2.08e+05  3.78e+02  9.16e-04  5.69e+02    1.66e+01      0   Skip BFGS
4  1.04e+05  1.89e+02  1.55e-03  3.51e+02    1.44e+01      0   Skip BFGS
5  5.21e+04  8.29e+01  2.26e-03  2.01e+02    1.24e+01      0   Skip BFGS
6  2.61e+04  3.40e+01  2.90e-03  1.10e+02    9.79e+00      0   Skip BFGS
7  1.30e+04  1.52e+01  3.39e-03  5.94e+01    8.30e+00      0   Skip BFGS
Reached starting chifact with l2-norm regularization: Start IRLS steps...
irls_threshold 1.2879967656420686
8  6.51e+03  8.84e+00  5.11e-03  4.22e+01    3.12e+00      0   Skip BFGS
9  1.05e+04  8.10e+00  5.88e-03  7.01e+01    1.43e+01      0
10  8.21e+03  1.24e+01  5.92e-03  6.09e+01    1.68e+00      0
11  6.39e+03  1.24e+01  6.32e-03  5.28e+01    1.87e+00      0   Skip BFGS
12  5.07e+03  1.20e+01  6.58e-03  4.53e+01    2.47e+00      0   Skip BFGS
13  4.12e+03  1.14e+01  6.65e-03  3.88e+01    2.89e+00      0   Skip BFGS
14  4.12e+03  1.07e+01  6.53e-03  3.76e+01    2.90e+00      0
15  4.12e+03  1.08e+01  6.13e-03  3.61e+01    3.34e+00      0
16  4.12e+03  1.10e+01  5.64e-03  3.42e+01    4.22e+00      0
17  3.39e+03  1.12e+01  5.20e-03  2.88e+01    4.27e+00      0
18  3.39e+03  1.06e+01  4.99e-03  2.75e+01    3.66e+00      0   Skip BFGS
19  3.39e+03  1.09e+01  4.60e-03  2.64e+01    8.80e+00      0
20  3.39e+03  1.09e+01  4.15e-03  2.50e+01    7.48e+00      0
21  3.39e+03  1.07e+01  3.69e-03  2.32e+01    4.61e+00      0
22  3.39e+03  1.04e+01  3.19e-03  2.12e+01    5.03e+00      0
23  3.39e+03  1.01e+01  2.70e-03  1.93e+01    5.22e+00      0
24  3.39e+03  9.87e+00  2.29e-03  1.76e+01    5.10e+00      0
25  3.39e+03  9.69e+00  2.02e-03  1.65e+01    4.79e+00      0   Skip BFGS
26  3.39e+03  9.47e+00  1.77e-03  1.55e+01    5.37e+00      0
27  3.39e+03  9.18e+00  1.54e-03  1.44e+01    5.79e+00      0
28  5.28e+03  8.94e+00  1.35e-03  1.61e+01    1.22e+01      0   Skip BFGS
29  5.28e+03  9.52e+00  1.11e-03  1.54e+01    8.69e+00      0
30  5.28e+03  9.59e+00  9.52e-04  1.46e+01    9.20e+00      0
31  5.28e+03  9.04e+00  7.34e-04  1.29e+01    8.06e+00      0
32  8.43e+03  8.40e+00  5.86e-04  1.33e+01    1.28e+01      0
33  1.33e+04  8.57e+00  4.57e-04  1.47e+01    1.52e+01      0
34  1.33e+04  9.15e+00  3.55e-04  1.39e+01    1.10e+01      0
35  1.33e+04  9.35e+00  2.99e-04  1.34e+01    9.79e+00      0   Skip BFGS
36  1.33e+04  9.49e+00  2.55e-04  1.29e+01    9.28e+00      0   Skip BFGS
37  1.33e+04  9.59e+00  2.18e-04  1.25e+01    9.05e+00      0   Skip BFGS
38  1.33e+04  9.68e+00  1.88e-04  1.22e+01    9.00e+00      0   Skip BFGS
39  1.33e+04  9.74e+00  1.62e-04  1.19e+01    9.22e+00      0
40  1.33e+04  9.74e+00  1.41e-04  1.16e+01    9.88e+00      0
41  1.33e+04  9.66e+00  1.22e-04  1.13e+01    1.05e+01      0
42  1.33e+04  9.39e+00  1.05e-04  1.08e+01    1.11e+01      0
43  2.09e+04  8.81e+00  8.63e-05  1.06e+01    1.47e+01      0
44  3.33e+04  8.45e+00  6.11e-05  1.05e+01    1.37e+01      0
45  5.32e+04  8.38e+00  4.53e-05  1.08e+01    1.40e+01      0   Skip BFGS
46  8.48e+04  8.41e+00  3.57e-05  1.14e+01    1.35e+01      0
47  1.35e+05  8.45e+00  2.88e-05  1.23e+01    1.24e+01      0
Reach maximum number of IRLS cycles: 40
------------------------- STOP! -------------------------
1 : |fc-fOld| = 0.0000e+00 <= tolF*(1+|f0|) = 1.8853e+02
1 : |xc-x_last| = 2.4894e-02 <= tolX*(1+|x0|) = 1.0010e-01
0 : |proj(x-g)-x|    = 1.2399e+01 <= tolG          = 1.0000e-01
0 : |proj(x-g)-x|    = 1.2399e+01 <= 1e3*eps       = 1.0000e-02
0 : maxIter   =     100    <= iter          =     48
------------------------- DONE! -------------------------


## Plotting Results#

fig, ax = plt.subplots(1, 2, figsize=(12 * 1.2, 4 * 1.2))

# True versus recovered model
ax.plot(mesh.cell_centers_x, true_model, "k-")
ax.plot(mesh.cell_centers_x, inv_prob.l2model, "b-")
ax.plot(mesh.cell_centers_x, recovered_model, "r-")
ax.legend(("True Model", "Recovered L2 Model", "Recovered Sparse Model"))
ax.set_ylim([-2, 2])

# Observed versus predicted data
ax.plot(data_obj.dobs, "k-")
ax.plot(inv_prob.dpred, "ko")
ax.legend(("Observed Data", "Predicted Data"))

# Plot convergence
fig = plt.figure(figsize=(9, 5))
ax = fig.add_axes([0.2, 0.1, 0.7, 0.85])
ax.plot(saveDict.phi_d, "k", lw=2)

twin = ax.twinx()
twin.plot(saveDict.phi_m, "k--", lw=2)
ax.plot(np.r_[IRLS.iterStart, IRLS.iterStart], np.r_[0, np.max(saveDict.phi_d)], "k:")
ax.text(
IRLS.iterStart,
0.0,
"IRLS Start",
va="bottom",
ha="center",
rotation="vertical",
size=12,
bbox={"facecolor": "white"},
)

ax.set_ylabel(r"$\phi_d$", size=16, rotation=0)
ax.set_xlabel("Iterations", size=14)
twin.set_ylabel(r"$\phi_m$", size=16, rotation=0)

• • Text(865.1527777777777, 0.5, '$\\phi_m$')


Total running time of the script: (0 minutes 32.629 seconds)

Estimated memory usage: 8 MB

Gallery generated by Sphinx-Gallery