simpeg.electromagnetics.natural_source.Simulation3DPrimarySecondary#
- class simpeg.electromagnetics.natural_source.Simulation3DPrimarySecondary(mesh, survey=None, sigmaPrimary=None, **kwargs)[source]#
- Bases: - Simulation3DElectricField- A NSEM problem solving a e formulation and a primary/secondary fields decomposition. - By eliminating the magnetic flux density using \[\mathbf{b} = \frac{1}{i \omega} \left(-\mathbf{C} \mathbf{e} \right)\]- we can write Maxwell’s equations as a second order system in \(\mathbf{e}\) only: \[\left[ \mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^f} \mathbf{C} + i \omega \mathbf{M_{\sigma}^e} \right] \mathbf{e}_{s} = i \omega \mathbf{M_{\sigma_{p}}^e} \mathbf{e}_{p}\]- which we solve for \(\mathbf{e_s}\). The total field \(\mathbf{e} = \mathbf{e_p} + \mathbf{e_s}\). - The primary field is estimated from a background model (commonly as a 1D model). - Attributes - Cell center inner product matrix. - Cell center property inner product matrix. - Cell center property inner product inverse matrix. - Cell center property inner product matrix. - Cell center property inner product inverse matrix. - Cell center property inner product matrix. - Cell center property inner product inverse matrix. - Cell center property inner product matrix. - Cell center property inner product inverse matrix. - Edge inner product matrix. - Edge inner product inverse matrix. - Edge property inner product matrix. - Edge property inner product inverse matrix. - Edge property inner product matrix. - Edge property inner product inverse matrix. - Edge property inner product matrix. - Edge property inner product inverse matrix. - Edge property inner product matrix. - Edge property inner product inverse matrix. - Face inner product matrix. - Face inner product inverse matrix. - Face property inner product matrix. - Face property inner product inverse matrix. - Face property inner product matrix. - Face property inner product inverse matrix. - Face property inner product matrix. - Face property inner product inverse matrix. - Face property inner product matrix. - Face property inner product inverse matrix. - Node inner product matrix. - Node inner product inverse matrix. - Node property inner product matrix. - Node property inner product inverse matrix. - Node property inner product matrix. - Node property inner product inverse matrix. - Node property inner product matrix. - Node property inner product inverse matrix. - Node property inner product matrix. - Node property inner product inverse matrix. - A list of solver objects to clean when the model is updated - SimPEG - Counterobject to store iterations and run-times.- HasModel.deleteTheseOnModelUpdate has been deprecated. - Whether to store the factorizations of the inverses of the system matrices. - Mesh for the simulation. - The inversion model. - Magnetic permeability (h/m) physical property model. - Derivative of Magnetic Permeability (H/m) wrt the model. - Mapping of the inversion model to Magnetic Permeability (H/m). - Inverse magnetic permeability (m/h) physical property model. - Derivative of Inverse Magnetic Permeability (m/H) wrt the model. - Mapping of the inversion model to Inverse Magnetic Permeability (m/H). - True if a model is necessary - Dielectric permittivity (F/m) - Electrical resistivity (ohm m) physical property model. - Derivative of Electrical resistivity (Ohm m) wrt the model. - Mapping of the inversion model to Electrical resistivity (Ohm m). - Path to directory where sensitivity file is stored. - Electrical conductivity (s/m) physical property model. - Derivative of Electrical conductivity (S/m) wrt the model. - Mapping of the inversion model to Electrical conductivity (S/m). - A background model, use for the calculation of the primary fields. - Numerical solver used in the forward simulation. - Solver-specific parameters. - Whether to store inner product matrices - Whether to compute and store the sensitivity matrix. - The FDEM survey object. - Verbose progress printout. - MccI - Vol - Methods - Jtvec(m, v[, f])- Compute the adjoint sensitivity matrix times a vector. - Jtvec_approx(m, v[, f])- Approximation of the Jacobian transpose times a vector for the model provided. - Jvec(m, v[, f])- Compute the sensitivity matrix times a vector. - Jvec_approx(m, v[, f])- Approximation of the Jacobian times a vector for the model provided. - MccMuDeriv(u[, v, adjoint])- Derivative of MccProperty with respect to the model. - MccMuIDeriv(u[, v, adjoint])- Derivative of MccPropertyI with respect to the model. - MccMuiDeriv(u[, v, adjoint])- Derivative of MccProperty with respect to the model. - MccMuiIDeriv(u[, v, adjoint])- Derivative of MccPropertyI with respect to the model. - MccRhoDeriv(u[, v, adjoint])- Derivative of MccProperty with respect to the model. - MccRhoIDeriv(u[, v, adjoint])- Derivative of MccPropertyI with respect to the model. - MccSigmaDeriv(u[, v, adjoint])- Derivative of MccProperty with respect to the model. - MccSigmaIDeriv(u[, v, adjoint])- Derivative of MccPropertyI with respect to the model. - MeMuDeriv(u[, v, adjoint])- Derivative of MeProperty with respect to the model. - MeMuIDeriv(u[, v, adjoint])- Derivative of MePropertyI with respect to the model. - MeMuiDeriv(u[, v, adjoint])- Derivative of MeProperty with respect to the model. - MeMuiIDeriv(u[, v, adjoint])- Derivative of MePropertyI with respect to the model. - MeRhoDeriv(u[, v, adjoint])- Derivative of MeProperty with respect to the model. - MeRhoIDeriv(u[, v, adjoint])- Derivative of MePropertyI with respect to the model. - MeSigmaDeriv(u[, v, adjoint])- Derivative of MeProperty with respect to the model. - MeSigmaIDeriv(u[, v, adjoint])- Derivative of MePropertyI with respect to the model. - MfMuDeriv(u[, v, adjoint])- Derivative of MfProperty with respect to the model. - MfMuIDeriv(u[, v, adjoint])- I Derivative of MfPropertyI with respect to the model. - MfMuiDeriv(u[, v, adjoint])- Derivative of MfProperty with respect to the model. - MfMuiIDeriv(u[, v, adjoint])- I Derivative of MfPropertyI with respect to the model. - MfRhoDeriv(u[, v, adjoint])- Derivative of MfProperty with respect to the model. - MfRhoIDeriv(u[, v, adjoint])- I Derivative of MfPropertyI with respect to the model. - MfSigmaDeriv(u[, v, adjoint])- Derivative of MfProperty with respect to the model. - MfSigmaIDeriv(u[, v, adjoint])- I Derivative of MfPropertyI with respect to the model. - MnMuDeriv(u[, v, adjoint])- Derivative of MnProperty with respect to the model. - MnMuIDeriv(u[, v, adjoint])- Derivative of MnPropertyI with respect to the model. - MnMuiDeriv(u[, v, adjoint])- Derivative of MnProperty with respect to the model. - MnMuiIDeriv(u[, v, adjoint])- Derivative of MnPropertyI with respect to the model. - MnRhoDeriv(u[, v, adjoint])- Derivative of MnProperty with respect to the model. - MnRhoIDeriv(u[, v, adjoint])- Derivative of MnPropertyI with respect to the model. - MnSigmaDeriv(u[, v, adjoint])- Derivative of MnProperty with respect to the model. - MnSigmaIDeriv(u[, v, adjoint])- Derivative of MnPropertyI with respect to the model. - dpred([m, f])- Predicted data for the model provided. - fields([m])- Compute and return the fields for the model provided. - fieldsPair- alias of - Fields3DElectricField- getA(freq)- System matrix for the frequency provided. - getADeriv(freq, u, v[, adjoint])- Derivative operation for the system matrix times a vector. - getADeriv_mui(freq, u, v[, adjoint])- Inverse permeability derivative operation for the system matrix times a vector. - getADeriv_sigma(freq, u, v[, adjoint])- Conductivity derivative operation for the system matrix times a vector. - getJ(m[, f])- Generate the full sensitivity matrix. - getJtJdiag(m[, W, f])- Return the diagonal of \(\mathbf{J^T J}\). - getRHS(freq)- Right-hand sides for the given frequency. - getRHSDeriv(freq, src, v[, adjoint])- Derivative of the right-hand side times a vector for a given source and frequency. - getSourceTerm(freq)- Returns the discrete source terms for the frequency provided. - make_synthetic_data(m[, relative_error, ...])- Make synthetic data for the model and Gaussian noise provided. - residual(m, dobs[, f])- The data residual. 
 
    