.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "content/examples/03-magnetics/plot_inv_mag_nonLinear_Amplitude.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_content_examples_03-magnetics_plot_inv_mag_nonLinear_Amplitude.py: Magnetic Amplitude inversion on a TreeMesh ========================================== In this example, we demonstrate the use of magnetic amplitude inversion on 3D TreeMesh for the inversion of Total Magnetic Intensity (TMI) data affected by remanence. The original idea must be credited to Shearer and Li (2005) @ CSM First we invert the TMI for an equivalent source layer, from which we recover 3-component magnetic data. This data is then transformed to amplitude Secondly, we invert the non-linear inverse problem with :class:`SimPEG.directives.UpdateSensitivityWeights`. We also uses the :class:`SimPEG.regularization.Sparse` to apply sparsity assumption in order to improve the recovery of a compact prism. .. GENERATED FROM PYTHON SOURCE LINES 19-43 .. code-block:: default import scipy as sp import numpy as np import shutil import matplotlib.pyplot as plt from scipy.interpolate import NearestNDInterpolator from SimPEG import ( data, data_misfit, directives, maps, inverse_problem, optimization, inversion, regularization, ) from SimPEG.potential_fields import magnetics from SimPEG import utils from SimPEG.utils import mkvc, surface2ind_topo from discretize.utils import mesh_builder_xyz, refine_tree_xyz # sphinx_gallery_thumbnail_number = 4 .. GENERATED FROM PYTHON SOURCE LINES 44-53 Setup ----- Define the survey and model parameters First we need to define the direction of the inducing field As a simple case, we pick a vertical inducing field of magnitude 50,000 nT. .. GENERATED FROM PYTHON SOURCE LINES 53-93 .. code-block:: default # We will assume a vertical inducing field H0 = (50000.0, 90.0, 0.0) # The magnetization is set along a different direction (induced + remanence) M = np.array([45.0, 90.0]) # Block with an effective susceptibility chi_e = 0.05 # Create grid of points for topography # Lets create a simple Gaussian topo and set the active cells [xx, yy] = np.meshgrid(np.linspace(-200, 200, 50), np.linspace(-200, 200, 50)) b = 100 A = 50 zz = A * np.exp(-0.5 * ((xx / b) ** 2.0 + (yy / b) ** 2.0)) topo = np.c_[mkvc(xx), mkvc(yy), mkvc(zz)] # Create and array of observation points xr = np.linspace(-100.0, 100.0, 20) yr = np.linspace(-100.0, 100.0, 20) X, Y = np.meshgrid(xr, yr) Z = A * np.exp(-0.5 * ((X / b) ** 2.0 + (Y / b) ** 2.0)) + 10 # Create a MAGsurvey rxLoc = np.c_[mkvc(X.T), mkvc(Y.T), mkvc(Z.T)] receiver_list = magnetics.receivers.Point(rxLoc) srcField = magnetics.sources.SourceField(receiver_list=[receiver_list], parameters=H0) survey = magnetics.survey.Survey(srcField) # Here how the topography looks with a quick interpolation, just a Gaussian... tri = sp.spatial.Delaunay(topo) fig = plt.figure() ax = fig.add_subplot(1, 1, 1, projection="3d") ax.plot_trisurf( topo[:, 0], topo[:, 1], topo[:, 2], triangles=tri.simplices, cmap=plt.cm.Spectral ) ax.scatter3D(rxLoc[:, 0], rxLoc[:, 1], rxLoc[:, 2], c="k") plt.show() .. image-sg:: /content/examples/03-magnetics/images/sphx_glr_plot_inv_mag_nonLinear_Amplitude_001.png :alt: plot inv mag nonLinear Amplitude :srcset: /content/examples/03-magnetics/images/sphx_glr_plot_inv_mag_nonLinear_Amplitude_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 94-103 Inversion Mesh -------------- Here, we create a TreeMesh with base cell size of 5 m. We created a small utility function to center the mesh around points and to figure out the outermost dimension for adequate padding distance. The second stage allows us to refine the mesh around points or surfaces (point assumed to follow an horiontal interface such as topo) .. GENERATED FROM PYTHON SOURCE LINES 103-119 .. code-block:: default # Create a mesh h = [5, 5, 5] padDist = np.ones((3, 2)) * 100 mesh = mesh_builder_xyz( rxLoc, h, padding_distance=padDist, depth_core=100, mesh_type="tree" ) mesh = refine_tree_xyz( mesh, topo, method="surface", octree_levels=[4, 4], finalize=True ) # Define the active cells from topo actv = utils.surface2ind_topo(mesh, topo) nC = int(actv.sum()) .. GENERATED FROM PYTHON SOURCE LINES 120-125 Forward modeling data --------------------- We can now generate TMI data .. GENERATED FROM PYTHON SOURCE LINES 125-203 .. code-block:: default # Convert the inclination and declination to vector in Cartesian M_xyz = utils.mat_utils.dip_azimuth2cartesian(np.ones(nC) * M[0], np.ones(nC) * M[1]) # Get the indicies of the magnetized block ind = utils.model_builder.getIndicesBlock( np.r_[-20, -20, -10], np.r_[20, 20, 25], mesh.gridCC, )[0] # Assign magnetization value, inducing field strength will # be applied in by the :class:`SimPEG.PF.Magnetics` problem model = np.zeros(mesh.nC) model[ind] = chi_e # Remove air cells model = model[actv] # Create reduced identity map idenMap = maps.IdentityMap(nP=nC) # Create the forward model operator simulation = magnetics.simulation.Simulation3DIntegral( survey=survey, mesh=mesh, chiMap=idenMap, ind_active=actv, store_sensitivities="forward_only", ) simulation.M = M_xyz # Compute some data and add some random noise synthetic_data = simulation.dpred(model) # Split the data in components nD = rxLoc.shape[0] std = 5 # nT synthetic_data += np.random.randn(nD) * std wd = np.ones(nD) * std # Assign data and uncertainties to the survey data_object = data.Data(survey, dobs=synthetic_data, standard_deviation=wd) # Plot the model and data plt.figure(figsize=(8, 8)) ax = plt.subplot(2, 1, 1) im = utils.plot_utils.plot2Ddata( rxLoc, synthetic_data, ax=ax, contourOpts={"cmap": "RdBu_r"} ) plt.colorbar(im[0]) ax.set_title("Predicted data.") plt.gca().set_aspect("equal", adjustable="box") # Plot the vector model ax = plt.subplot(2, 1, 2) # Create active map to go from reduce set to full actvPlot = maps.InjectActiveCells(mesh, actv, np.nan) mesh.plot_slice( actvPlot * model, ax=ax, normal="Y", ind=66, pcolor_opts={"vmin": 0.0, "vmax": 0.01}, grid=True, ) ax.set_xlim([-200, 200]) ax.set_ylim([-100, 75]) ax.set_xlabel("x") ax.set_ylabel("y") plt.gca().set_aspect("equal", adjustable="box") plt.show() .. image-sg:: /content/examples/03-magnetics/images/sphx_glr_plot_inv_mag_nonLinear_Amplitude_002.png :alt: Predicted data., Slice 66, Y = 12.50 :srcset: /content/examples/03-magnetics/images/sphx_glr_plot_inv_mag_nonLinear_Amplitude_002.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 204-211 Equivalent Source ----------------- We first need to convert the TMI data into amplitude. We do this by an effective susceptibility layer, from which we can forward component data .. GENERATED FROM PYTHON SOURCE LINES 211-264 .. code-block:: default # Get the active cells for equivalent source is the topo only surf = surface2ind_topo(mesh, topo) # surf = utils.plot_utils.surface_layer_index(mesh, topo) nC = np.count_nonzero(surf) # Number of active cells mstart = np.ones(nC) * 1e-4 # Create active map to go from reduce set to full surfMap = maps.InjectActiveCells(mesh, surf, np.nan) # Create identity map idenMap = maps.IdentityMap(nP=nC) # Create static map simulation = magnetics.simulation.Simulation3DIntegral( mesh=mesh, survey=survey, chiMap=idenMap, ind_active=surf, store_sensitivities="ram" ) wr = simulation.getJtJdiag(mstart) ** 0.5 wr = wr / np.max(np.abs(wr)) # Create a regularization function, in this case l2l2 reg = regularization.Sparse( mesh, indActive=surf, mapping=maps.IdentityMap(nP=nC), alpha_z=0 ) reg.mref = np.zeros(nC) # Specify how the optimization will proceed, set susceptibility bounds to inf opt = optimization.ProjectedGNCG( maxIter=20, lower=-np.inf, upper=np.inf, maxIterLS=20, maxIterCG=20, tolCG=1e-3 ) # Define misfit function (obs-calc) dmis = data_misfit.L2DataMisfit(simulation=simulation, data=data_object) # Create the default L2 inverse problem from the above objects invProb = inverse_problem.BaseInvProblem(dmis, reg, opt) # Specify how the initial beta is found betaest = directives.BetaEstimate_ByEig(beta0_ratio=2) # Target misfit to stop the inversion, # try to fit as much as possible of the signal, we don't want to lose anything IRLS = directives.Update_IRLS( f_min_change=1e-3, minGNiter=1, beta_tol=1e-1, max_irls_iterations=5 ) update_Jacobi = directives.UpdatePreconditioner() # Put all the parts together inv = inversion.BaseInversion(invProb, directiveList=[betaest, IRLS, update_Jacobi]) # Run the equivalent source inversion mrec = inv.run(mstart) .. rst-class:: sphx-glr-script-out .. code-block:: none SimPEG.InvProblem is setting bfgsH0 to the inverse of the eval2Deriv. ***Done using the default solver Pardiso and no solver_opts.*** model has any nan: 0 =============================== Projected GNCG =============================== # beta phi_d phi_m f |proj(x-g)-x| LS Comment ----------------------------------------------------------------------------- x0 has any nan: 0 0 7.65e+01 2.37e+02 6.79e-01 2.89e+02 7.81e+04 0 Reached starting chifact with l2-norm regularization: Start IRLS steps... irls_threshold 0.006113658784972103 1 3.82e+01 4.24e+01 7.06e-01 6.94e+01 3.32e+02 0 2 1.46e+02 3.53e+01 1.17e+00 2.07e+02 4.82e+03 0 Skip BFGS 3 3.05e+02 9.22e+01 1.87e-01 1.49e+02 1.80e+03 0 4 5.77e+02 1.12e+02 8.38e-02 1.61e+02 2.04e+03 0 Skip BFGS 5 1.02e+03 1.30e+02 4.01e-02 1.71e+02 2.34e+03 0 Reach maximum number of IRLS cycles: 5 ------------------------- STOP! ------------------------- 1 : |fc-fOld| = 0.0000e+00 <= tolF*(1+|f0|) = 2.9008e+01 1 : |xc-x_last| = 4.8761e-03 <= tolX*(1+|x0|) = 1.0195e-01 0 : |proj(x-g)-x| = 2.3396e+03 <= tolG = 1.0000e-01 0 : |proj(x-g)-x| = 2.3396e+03 <= 1e3*eps = 1.0000e-02 0 : maxIter = 20 <= iter = 6 ------------------------- DONE! ------------------------- .. GENERATED FROM PYTHON SOURCE LINES 265-271 Forward Amplitude Data ---------------------- Now that we have an equialent source layer, we can forward model all three components of the field and add them up: :math:`|B| = \sqrt{( Bx^2 + Bx^2 + Bx^2 )}` .. GENERATED FROM PYTHON SOURCE LINES 271-316 .. code-block:: default receiver_list = magnetics.receivers.Point(rxLoc, components=["bx", "by", "bz"]) srcField = magnetics.sources.SourceField(receiver_list=[receiver_list], parameters=H0) surveyAmp = magnetics.survey.Survey(srcField) simulation = magnetics.simulation.Simulation3DIntegral( mesh=mesh, survey=surveyAmp, chiMap=idenMap, ind_active=surf, is_amplitude_data=True ) bAmp = simulation.fields(mrec) # Plot the layer model and data plt.figure(figsize=(8, 8)) ax = plt.subplot(2, 2, 1) im = utils.plot_utils.plot2Ddata( rxLoc, invProb.dpred, ax=ax, contourOpts={"cmap": "RdBu_r"} ) plt.colorbar(im[0]) ax.set_title("Predicted data.") plt.gca().set_aspect("equal", adjustable="box") ax = plt.subplot(2, 2, 2) im = utils.plot_utils.plot2Ddata(rxLoc, bAmp, ax=ax, contourOpts={"cmap": "RdBu_r"}) plt.colorbar(im[0]) ax.set_title("Calculated amplitude") plt.gca().set_aspect("equal", adjustable="box") # Plot the equivalent layer model ax = plt.subplot(2, 1, 2) mesh.plot_slice( surfMap * mrec, ax=ax, normal="Y", ind=66, pcolor_opts={"vmin": 0.0, "vmax": 0.01}, grid=True, ) ax.set_xlim([-200, 200]) ax.set_ylim([-100, 75]) ax.set_xlabel("x") ax.set_ylabel("y") plt.gca().set_aspect("equal", adjustable="box") plt.show() .. image-sg:: /content/examples/03-magnetics/images/sphx_glr_plot_inv_mag_nonLinear_Amplitude_003.png :alt: Predicted data., Calculated amplitude, Slice 66, Y = 12.50 :srcset: /content/examples/03-magnetics/images/sphx_glr_plot_inv_mag_nonLinear_Amplitude_003.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 317-323 Amplitude Inversion ------------------- Now that we have amplitude data, we can invert for an effective susceptibility. This is a non-linear inversion. .. GENERATED FROM PYTHON SOURCE LINES 323-380 .. code-block:: default # Create active map to go from reduce space to full actvMap = maps.InjectActiveCells(mesh, actv, -100) nC = int(actv.sum()) # Create identity map idenMap = maps.IdentityMap(nP=nC) mstart = np.ones(nC) * 1e-4 # Create the forward model operator simulation = magnetics.simulation.Simulation3DIntegral( survey=surveyAmp, mesh=mesh, chiMap=idenMap, ind_active=actv, is_amplitude_data=True ) data_obj = data.Data(survey, dobs=bAmp, noise_floor=wd) # Create a sparse regularization reg = regularization.Sparse(mesh, indActive=actv, mapping=idenMap) reg.norms = [1, 0, 0, 0] reg.mref = np.zeros(nC) # Data misfit function dmis = data_misfit.L2DataMisfit(simulation=simulation, data=data_obj) # Add directives to the inversion opt = optimization.ProjectedGNCG( maxIter=30, lower=0.0, upper=1.0, maxIterLS=20, maxIterCG=20, tolCG=1e-3 ) invProb = inverse_problem.BaseInvProblem(dmis, reg, opt) # Here is the list of directives betaest = directives.BetaEstimate_ByEig(beta0_ratio=1) # Specify the sparse norms IRLS = directives.Update_IRLS( max_irls_iterations=10, f_min_change=1e-3, minGNiter=1, coolingRate=1, beta_search=False, ) # Special directive specific to the mag amplitude problem. The sensitivity # weights are updated between each iteration. update_SensWeight = directives.UpdateSensitivityWeights() update_Jacobi = directives.UpdatePreconditioner() # Put all together inv = inversion.BaseInversion( invProb, directiveList=[update_SensWeight, betaest, IRLS, update_Jacobi] ) # Invert mrec_Amp = inv.run(mstart) .. rst-class:: sphx-glr-script-out .. code-block:: none SimPEG.InvProblem is setting bfgsH0 to the inverse of the eval2Deriv. ***Done using the default solver Pardiso and no solver_opts.*** model has any nan: 0 =============================== Projected GNCG =============================== # beta phi_d phi_m f |proj(x-g)-x| LS Comment ----------------------------------------------------------------------------- x0 has any nan: 0 0 2.51e+04 9.78e+00 1.54e-03 4.84e+01 9.35e+01 0 Reached starting chifact with l2-norm regularization: Start IRLS steps... irls_threshold 6.944423601221495e-05 1 1.25e+04 3.84e+00 9.04e-05 4.98e+00 9.65e+01 0 2 1.65e+06 2.30e+00 1.83e-04 3.04e+02 5.67e+01 0 3 3.02e+07 1.73e+01 3.59e-07 2.82e+01 3.81e+01 0 4 5.13e+08 1.88e+01 2.05e-09 1.98e+01 2.26e+01 0 Skip BFGS 5 8.67e+09 1.89e+01 7.33e-12 1.89e+01 2.43e+00 0 6 1.46e+11 1.89e+01 2.56e-14 1.89e+01 2.25e+00 0 7 2.47e+12 1.89e+01 8.95e-17 1.89e+01 6.70e-01 0 Skip BFGS 8 4.18e+13 1.89e+01 3.14e-19 1.89e+01 1.26e-10 0 Skip BFGS ------------------------- STOP! ------------------------- 1 : |fc-fOld| = 1.8365e-04 <= tolF*(1+|f0|) = 4.9397e+00 1 : |xc-x_last| = 2.0086e-09 <= tolX*(1+|x0|) = 1.0195e-01 1 : |proj(x-g)-x| = 1.2640e-10 <= tolG = 1.0000e-01 1 : |proj(x-g)-x| = 1.2640e-10 <= 1e3*eps = 1.0000e-02 0 : maxIter = 30 <= iter = 8 ------------------------- DONE! ------------------------- .. GENERATED FROM PYTHON SOURCE LINES 381-391 Final Plot ---------- Let's compare the smooth and compact model Note that the recovered effective susceptibility block is slightly offset to the left of the true model. This is due to the wrong assumption of a vertical magnetization. Important to remember that the amplitude inversion is weakly sensitive to the magnetization direction, but can still have an impact. .. GENERATED FROM PYTHON SOURCE LINES 391-436 .. code-block:: default # Plot the layer model and data plt.figure(figsize=(12, 8)) ax = plt.subplot(3, 1, 1) im = utils.plot_utils.plot2Ddata( rxLoc, invProb.dpred, ax=ax, contourOpts={"cmap": "RdBu_r"} ) plt.colorbar(im[0]) ax.set_title("Predicted data.") plt.gca().set_aspect("equal", adjustable="box") # Plot the l2 model ax = plt.subplot(3, 1, 2) im = mesh.plot_slice( actvPlot * invProb.l2model, ax=ax, normal="Y", ind=66, pcolor_opts={"vmin": 0.0, "vmax": 0.01}, grid=True, ) plt.colorbar(im[0]) ax.set_xlim([-200, 200]) ax.set_ylim([-100, 75]) ax.set_xlabel("x") ax.set_ylabel("y") plt.gca().set_aspect("equal", adjustable="box") # Plot the lp model ax = plt.subplot(3, 1, 3) im = mesh.plot_slice( actvPlot * invProb.model, ax=ax, normal="Y", ind=66, pcolor_opts={"vmin": 0.0, "vmax": 0.01}, grid=True, ) plt.colorbar(im[0]) ax.set_xlim([-200, 200]) ax.set_ylim([-100, 75]) ax.set_xlabel("x") ax.set_ylabel("y") plt.gca().set_aspect("equal", adjustable="box") plt.show() .. image-sg:: /content/examples/03-magnetics/images/sphx_glr_plot_inv_mag_nonLinear_Amplitude_004.png :alt: Predicted data., Slice 66, Y = 12.50, Slice 66, Y = 12.50 :srcset: /content/examples/03-magnetics/images/sphx_glr_plot_inv_mag_nonLinear_Amplitude_004.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 49.331 seconds) **Estimated memory usage:** 376 MB .. _sphx_glr_download_content_examples_03-magnetics_plot_inv_mag_nonLinear_Amplitude.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_inv_mag_nonLinear_Amplitude.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_inv_mag_nonLinear_Amplitude.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_