.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "content/examples/04-dcip/plot_dc_analytic.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_content_examples_04-dcip_plot_dc_analytic.py: DC Analytic Dipole ================== Comparison of the analytic and numerical solution for a direct current resistivity dipole in 3D. .. GENERATED FROM PYTHON SOURCE LINES 8-74 .. image-sg:: /content/examples/04-dcip/images/sphx_glr_plot_dc_analytic_001.png :alt: Analytic, Computed :srcset: /content/examples/04-dcip/images/sphx_glr_plot_dc_analytic_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none 0.06464333484677043 | .. code-block:: default from __future__ import print_function import discretize from SimPEG import utils import numpy as np import matplotlib.pyplot as plt from SimPEG.electromagnetics.static import resistivity as DC try: from pymatsolver import Pardiso as Solver except ImportError: from SimPEG import SolverLU as Solver cs = 25.0 hx = [(cs, 7, -1.3), (cs, 21), (cs, 7, 1.3)] hy = [(cs, 7, -1.3), (cs, 21), (cs, 7, 1.3)] hz = [(cs, 7, -1.3), (cs, 20)] mesh = discretize.TensorMesh([hx, hy, hz], "CCN") sighalf = 1e-2 sigma = np.ones(mesh.nC) * sighalf xtemp = np.linspace(-150, 150, 21) ytemp = np.linspace(-150, 150, 21) xyz_rxP = utils.ndgrid(xtemp - 10.0, ytemp, np.r_[0.0]) xyz_rxN = utils.ndgrid(xtemp + 10.0, ytemp, np.r_[0.0]) xyz_rxM = utils.ndgrid(xtemp, ytemp, np.r_[0.0]) rx = DC.Rx.Dipole(xyz_rxP, xyz_rxN) src = DC.Src.Dipole([rx], np.r_[-200, 0, -12.5], np.r_[+200, 0, -12.5]) survey = DC.Survey([src]) sim = DC.Simulation3DCellCentered( mesh, survey=survey, solver=Solver, sigma=sigma, bc_type="Neumann" ) data = sim.dpred() def DChalf(srclocP, srclocN, rxloc, sigma, I=1.0): rp = (srclocP.reshape([1, -1])).repeat(rxloc.shape[0], axis=0) rn = (srclocN.reshape([1, -1])).repeat(rxloc.shape[0], axis=0) rP = np.sqrt(((rxloc - rp) ** 2).sum(axis=1)) rN = np.sqrt(((rxloc - rn) ** 2).sum(axis=1)) return I / (sigma * 2.0 * np.pi) * (1 / rP - 1 / rN) data_anaP = DChalf(np.r_[-200, 0, 0.0], np.r_[+200, 0, 0.0], xyz_rxP, sighalf) data_anaN = DChalf(np.r_[-200, 0, 0.0], np.r_[+200, 0, 0.0], xyz_rxN, sighalf) data_ana = data_anaP - data_anaN Data_ana = data_ana.reshape((21, 21), order="F") Data = data.reshape((21, 21), order="F") X = xyz_rxM[:, 0].reshape((21, 21), order="F") Y = xyz_rxM[:, 1].reshape((21, 21), order="F") fig, ax = plt.subplots(1, 2, figsize=(12, 5)) vmin = np.r_[data, data_ana].min() vmax = np.r_[data, data_ana].max() dat0 = ax[0].contourf(X, Y, Data_ana, 60, vmin=vmin, vmax=vmax) dat1 = ax[1].contourf(X, Y, Data, 60, vmin=vmin, vmax=vmax) plt.colorbar(dat0, orientation="horizontal", ax=ax[0]) plt.colorbar(dat1, orientation="horizontal", ax=ax[1]) ax[0].set_title("Analytic") ax[1].set_title("Computed") print(np.linalg.norm(data - data_ana) / np.linalg.norm(data_ana)) plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 1.100 seconds) **Estimated memory usage:** 23 MB .. _sphx_glr_download_content_examples_04-dcip_plot_dc_analytic.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_dc_analytic.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_dc_analytic.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_