.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "content/examples/20-published/plot_richards_celia1990.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_content_examples_20-published_plot_richards_celia1990.py: FLOW: Richards: 1D: Celia1990 ============================= There are two different forms of Richards equation that differ on how they deal with the non-linearity in the time-stepping term. The most fundamental form, referred to as the 'mixed'-form of Richards Equation Celia1990_ .. math:: \frac{\partial \theta(\psi)}{\partial t} - \nabla \cdot k(\psi) \nabla \psi - \frac{\partial k(\psi)}{\partial z} = 0 \quad \psi \in \Omega where \\(\\theta\\) is water content, and \\(\\psi\\) is pressure head. This formulation of Richards equation is called the 'mixed'-form because the equation is parameterized in \\(\\psi\\) but the time-stepping is in terms of \\(\\theta\\). As noted in Celia1990_ the 'head'-based form of Richards equation can be written in the continuous form as: .. math:: \frac{\partial \theta}{\partial \psi} \frac{\partial \psi}{\partial t} - \nabla \cdot k(\psi) \nabla \psi - \frac{\partial k(\psi)}{\partial z} = 0 \quad \psi \in \Omega However, it can be shown that this does not conserve mass in the discrete formulation. Here we reproduce the results from Celia1990_ demonstrating the head-based formulation and the mixed-formulation. .. _Celia1990: http://www.webpages.uidaho.edu/ch/papers/Celia.pdf .. GENERATED FROM PYTHON SOURCE LINES 42-108 .. image-sg:: /content/examples/20-published/images/sphx_glr_plot_richards_celia1990_001.png :alt: Mixed Method, Head-Based Method :srcset: /content/examples/20-published/images/sphx_glr_plot_richards_celia1990_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none /usr/share/miniconda/envs/test/lib/python3.7/site-packages/discretize/operators/differential_operators.py:1795: UserWarning: cell_gradient_BC is deprecated and is not longer used. See cell_gradient | .. code-block:: default import matplotlib.pyplot as plt import numpy as np import discretize from SimPEG import maps from SimPEG.flow import richards def run(plotIt=True): M = discretize.TensorMesh([np.ones(40)]) M.set_cell_gradient_BC("dirichlet") params = richards.empirical.HaverkampParams().celia1990 k_fun, theta_fun = richards.empirical.haverkamp(M, **params) k_fun.KsMap = maps.IdentityMap(nP=M.nC) bc = np.array([-61.5, -20.7]) h = np.zeros(M.nC) + bc[0] def getFields(timeStep, method): timeSteps = np.ones(int(360 / timeStep)) * timeStep prob = richards.SimulationNDCellCentered( M, hydraulic_conductivity=k_fun, water_retention=theta_fun, boundary_conditions=bc, initial_conditions=h, do_newton=False, method=method, ) prob.time_steps = timeSteps return prob.fields(params["Ks"] * np.ones(M.nC)) Hs_M010 = getFields(10, "mixed") Hs_M030 = getFields(30, "mixed") Hs_M120 = getFields(120, "mixed") Hs_H010 = getFields(10, "head") Hs_H030 = getFields(30, "head") Hs_H120 = getFields(120, "head") if not plotIt: return plt.figure(figsize=(13, 5)) plt.subplot(121) plt.plot(40 - M.gridCC, Hs_M010[-1], "b-") plt.plot(40 - M.gridCC, Hs_M030[-1], "r-") plt.plot(40 - M.gridCC, Hs_M120[-1], "k-") plt.ylim([-70, -10]) plt.title("Mixed Method") plt.xlabel("Depth, cm") plt.ylabel("Pressure Head, cm") plt.legend(("$\Delta t$ = 10 sec", "$\Delta t$ = 30 sec", "$\Delta t$ = 120 sec")) plt.subplot(122) plt.plot(40 - M.gridCC, Hs_H010[-1], "b-") plt.plot(40 - M.gridCC, Hs_H030[-1], "r-") plt.plot(40 - M.gridCC, Hs_H120[-1], "k-") plt.ylim([-70, -10]) plt.title("Head-Based Method") plt.xlabel("Depth, cm") plt.ylabel("Pressure Head, cm") plt.legend(("$\Delta t$ = 10 sec", "$\Delta t$ = 30 sec", "$\Delta t$ = 120 sec")) if __name__ == "__main__": run() plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 3.752 seconds) **Estimated memory usage:** 18 MB .. _sphx_glr_download_content_examples_20-published_plot_richards_celia1990.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_richards_celia1990.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_richards_celia1990.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_