.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "content/tutorials/06-ip/plot_inv_2_dcip2d.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_content_tutorials_06-ip_plot_inv_2_dcip2d.py: 2.5D DC Resistivity and IP Least-Squares Inversion ================================================== Here we invert a line of DC resistivity and induced polarization data to recover electrical conductivity and chargeability models, respectively. We formulate the corresponding inverse problems as least-squares optimization problems. For this tutorial, we focus on the following: - Defining the survey - Generating a mesh based on survey geometry - Including surface topography - Defining the inverse problem (data misfit, regularization, directives) - Applying sensitivity weighting - Plotting the recovered model and data misfit The DC data are measured voltages and the IP data are defined as secondary potentials. .. GENERATED FROM PYTHON SOURCE LINES 24-27 Import modules -------------- .. GENERATED FROM PYTHON SOURCE LINES 27-67 .. code-block:: default import os import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.colors import LogNorm import tarfile from discretize import TreeMesh from discretize.utils import mkvc, refine_tree_xyz from SimPEG.utils import surface2ind_topo, model_builder from SimPEG import ( maps, data, data_misfit, regularization, optimization, inverse_problem, inversion, directives, utils, ) from SimPEG.electromagnetics.static import resistivity as dc from SimPEG.electromagnetics.static import induced_polarization as ip from SimPEG.electromagnetics.static.utils.static_utils import ( apparent_resistivity_from_voltage, plot_pseudosection, ) from SimPEG.utils.io_utils.io_utils_electromagnetics import read_dcip2d_ubc try: from pymatsolver import Pardiso as Solver except ImportError: from SimPEG import SolverLU as Solver mpl.rcParams.update({"font.size": 16}) # sphinx_gallery_thumbnail_number = 7 .. GENERATED FROM PYTHON SOURCE LINES 68-77 Define File Names ----------------- Here we provide the file paths to assets we need to run the inversion. The path to the true model conductivity and chargeability models are also provided for comparison with the inversion results. These files are stored as a tar-file on our google cloud bucket: "https://storage.googleapis.com/simpeg/doc-assets/dcip2d.tar.gz" .. GENERATED FROM PYTHON SOURCE LINES 77-98 .. code-block:: default # storage bucket where we have the data data_source = "https://storage.googleapis.com/simpeg/doc-assets/dcip2d.tar.gz" # download the data downloaded_data = utils.download(data_source, overwrite=True) # unzip the tarfile tar = tarfile.open(downloaded_data, "r") tar.extractall() tar.close() # path to the directory containing our data dir_path = downloaded_data.split(".")[0] + os.path.sep # files to work with topo_filename = dir_path + "topo_xyz.txt" dc_data_filename = dir_path + "dc_data.obs" ip_data_filename = dir_path + "ip_data.obs" .. rst-class:: sphx-glr-script-out .. code-block:: none Downloading https://storage.googleapis.com/simpeg/doc-assets/dcip2d.tar.gz saved to: /home/vsts/work/1/s/tutorials/06-ip/dcip2d.tar.gz Download completed! .. GENERATED FROM PYTHON SOURCE LINES 99-105 Load Data, Define Survey and Plot --------------------------------- Here we load the observed data, define the DC and IP survey geometry and plot the data values using pseudo-sections. .. GENERATED FROM PYTHON SOURCE LINES 105-111 .. code-block:: default # Load data topo_xyz = np.loadtxt(str(topo_filename)) dc_data = read_dcip2d_ubc(dc_data_filename, "volt", "general") ip_data = read_dcip2d_ubc(ip_data_filename, "apparent_chargeability", "general") .. GENERATED FROM PYTHON SOURCE LINES 112-115 Plot Observed Data in Pseudosection ----------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 115-158 .. code-block:: default # Plot apparent conductivity using pseudo-section mpl.rcParams.update({"font.size": 12}) apparent_conductivities = 1 / apparent_resistivity_from_voltage( dc_data.survey, dc_data.dobs ) # Plot apparent conductivity pseudo-section fig = plt.figure(figsize=(12, 5)) ax1 = fig.add_axes([0.1, 0.15, 0.75, 0.78]) plot_pseudosection( dc_data.survey, apparent_conductivities, "contourf", ax=ax1, scale="log", cbar_label="S/m", mask_topography=True, contourf_opts={"levels": 20, "cmap": mpl.cm.viridis}, ) ax1.set_title("Apparent Conductivity") plt.show() # Plot apparent chargeability in pseudo-section apparent_chargeability = ip_data.dobs fig = plt.figure(figsize=(12, 5)) ax1 = fig.add_axes([0.1, 0.15, 0.75, 0.78]) plot_pseudosection( ip_data.survey, apparent_chargeability, "contourf", ax=ax1, scale="linear", cbar_label="V/V", mask_topography=True, contourf_opts={"levels": 20, "cmap": mpl.cm.plasma}, ) ax1.set_title("Apparent Chargeability") plt.show() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /content/tutorials/06-ip/images/sphx_glr_plot_inv_2_dcip2d_001.png :alt: Apparent Conductivity :srcset: /content/tutorials/06-ip/images/sphx_glr_plot_inv_2_dcip2d_001.png :class: sphx-glr-multi-img * .. image-sg:: /content/tutorials/06-ip/images/sphx_glr_plot_inv_2_dcip2d_002.png :alt: Apparent Chargeability :srcset: /content/tutorials/06-ip/images/sphx_glr_plot_inv_2_dcip2d_002.png :class: sphx-glr-multi-img .. GENERATED FROM PYTHON SOURCE LINES 159-168 Assign Uncertainties -------------------- Inversion with SimPEG requires that we define the uncertainties on our data. This represents our estimate of the standard deviation of the noise in our data. For DC data, the uncertainties are 5% of the absolute value. For appanrent chargeability IP data, the uncertainties are 5e-3 V/V. .. GENERATED FROM PYTHON SOURCE LINES 168-172 .. code-block:: default dc_data.standard_deviation = 0.05 * np.abs(dc_data.dobs) ip_data.standard_deviation = 5e-3 * np.ones_like(ip_data.dobs) .. GENERATED FROM PYTHON SOURCE LINES 173-179 Create Tree Mesh ---------------- Here, we create the Tree mesh that will be used to invert both DC resistivity and IP data. .. GENERATED FROM PYTHON SOURCE LINES 179-227 .. code-block:: default dh = 4 # base cell width dom_width_x = 3200.0 # domain width x dom_width_z = 2400.0 # domain width z nbcx = 2 ** int(np.round(np.log(dom_width_x / dh) / np.log(2.0))) # num. base cells x nbcz = 2 ** int(np.round(np.log(dom_width_z / dh) / np.log(2.0))) # num. base cells z # Define the base mesh hx = [(dh, nbcx)] hz = [(dh, nbcz)] mesh = TreeMesh([hx, hz], x0="CN") # Mesh refinement based on topography mesh = refine_tree_xyz( mesh, topo_xyz[:, [0, 2]], octree_levels=[0, 0, 4, 4], method="surface", finalize=False, ) # Mesh refinement near transmitters and receivers. First we need to obtain the # set of unique electrode locations. electrode_locations = np.c_[ dc_data.survey.locations_a, dc_data.survey.locations_b, dc_data.survey.locations_m, dc_data.survey.locations_n, ] unique_locations = np.unique( np.reshape(electrode_locations, (4 * dc_data.survey.nD, 2)), axis=0 ) mesh = refine_tree_xyz( mesh, unique_locations, octree_levels=[4, 4], method="radial", finalize=False ) # Refine core mesh region xp, zp = np.meshgrid([-600.0, 600.0], [-400.0, 0.0]) xyz = np.c_[mkvc(xp), mkvc(zp)] mesh = refine_tree_xyz( mesh, xyz, octree_levels=[0, 0, 2, 8], method="box", finalize=False ) mesh.finalize() .. rst-class:: sphx-glr-script-out .. code-block:: none /usr/share/miniconda/envs/test/lib/python3.7/site-packages/scipy/interpolate/interpolate.py:630: RuntimeWarning: invalid value encountered in true_divide .. GENERATED FROM PYTHON SOURCE LINES 228-236 Project Surveys to Discretized Topography ----------------------------------------- It is important that electrodes are not modeled as being in the air. Even if the electrodes are properly located along surface topography, they may lie above the discretized topography. This step is carried out to ensure all electrodes lie on the discretized surface. .. GENERATED FROM PYTHON SOURCE LINES 236-259 .. code-block:: default # Create 2D topography. Since our 3D topography only changes in the x direction, # it is easy to define the 2D topography projected along the survey line. For # arbitrary topography and for an arbitrary survey orientation, the user must # define the 2D topography along the survey line. topo_2d = np.unique(topo_xyz[:, [0, 2]], axis=0) # Find cells that lie below surface topography ind_active = surface2ind_topo(mesh, topo_2d) # Extract survey from data object dc_survey = dc_data.survey ip_survey = ip_data.survey # Shift electrodes to the surface of discretized topography dc_survey.drape_electrodes_on_topography(mesh, ind_active, option="top") ip_survey.drape_electrodes_on_topography(mesh, ind_active, option="top") # Reset survey in data object dc_data.survey = dc_survey ip_data.survey = ip_survey .. GENERATED FROM PYTHON SOURCE LINES 260-268 Starting/Reference Model and Mapping on OcTree Mesh --------------------------------------------------- Here, we would create starting and/or reference models for the DC inversion as well as the mapping from the model space to the active cells. Starting and reference models can be a constant background value or contain a-priori structures. Here, the starting model is the natural log of 0.01 S/m. .. GENERATED FROM PYTHON SOURCE LINES 268-281 .. code-block:: default # Define conductivity model in S/m (or resistivity model in Ohm m) air_conductivity = np.log(1e-8) background_conductivity = np.log(1e-2) active_map = maps.InjectActiveCells(mesh, ind_active, np.exp(air_conductivity)) nC = int(ind_active.sum()) conductivity_map = active_map * maps.ExpMap() # Define model starting_conductivity_model = background_conductivity * np.ones(nC) .. GENERATED FROM PYTHON SOURCE LINES 282-287 Define the Physics of the DC Simulation --------------------------------------- Here, we define the physics of the DC resistivity problem. .. GENERATED FROM PYTHON SOURCE LINES 287-293 .. code-block:: default # Define the problem. Define the cells below topography and the mapping dc_simulation = dc.Simulation2DNodal( mesh, survey=dc_survey, sigmaMap=conductivity_map, solver=Solver, storeJ=True ) .. GENERATED FROM PYTHON SOURCE LINES 294-304 Define DC Inverse Problem ------------------------- The inverse problem is defined by 3 things: 1) Data Misfit: a measure of how well our recovered model explains the field data 2) Regularization: constraints placed on the recovered model and a priori information 3) Optimization: the numerical approach used to solve the inverse problem .. GENERATED FROM PYTHON SOURCE LINES 304-330 .. code-block:: default # Define the data misfit. Here the data misfit is the L2 norm of the weighted # residual between the observed data and the data predicted for a given model. # Within the data misfit, the residual between predicted and observed data are # normalized by the data's standard deviation. dc_data_misfit = data_misfit.L2DataMisfit(data=dc_data, simulation=dc_simulation) # Define the regularization (model objective function) dc_regularization = regularization.WeightedLeastSquares( mesh, indActive=ind_active, reference_model=starting_conductivity_model, alpha_s=0.01, alpha_x=1, alpha_y=1, ) # Define how the optimization problem is solved. Here we will use an inexact # Gauss-Newton approach. dc_optimization = optimization.InexactGaussNewton(maxIter=40) # Here we define the inverse problem that is to be solved dc_inverse_problem = inverse_problem.BaseInvProblem( dc_data_misfit, dc_regularization, dc_optimization ) .. GENERATED FROM PYTHON SOURCE LINES 331-338 Define DC Inversion Directives ------------------------------ Here we define any directives that are carried out during the inversion. This includes the cooling schedule for the trade-off parameter (beta), stopping criteria for the inversion and saving inversion results at each iteration. .. GENERATED FROM PYTHON SOURCE LINES 338-369 .. code-block:: default # Apply and update sensitivity weighting as the model updates update_sensitivity_weighting = directives.UpdateSensitivityWeights() # Defining a starting value for the trade-off parameter (beta) between the data # misfit and the regularization. starting_beta = directives.BetaEstimate_ByEig(beta0_ratio=1e1) # Set the rate of reduction in trade-off parameter (beta) each time the # the inverse problem is solved. And set the number of Gauss-Newton iterations # for each trade-off paramter value. beta_schedule = directives.BetaSchedule(coolingFactor=3, coolingRate=2) # Options for outputting recovered models and predicted data for each beta. save_iteration = directives.SaveOutputEveryIteration(save_txt=False) # Setting a stopping criteria for the inversion. target_misfit = directives.TargetMisfit(chifact=1) # Update preconditioner update_jacobi = directives.UpdatePreconditioner() directives_list = [ update_sensitivity_weighting, starting_beta, beta_schedule, save_iteration, target_misfit, update_jacobi, ] .. GENERATED FROM PYTHON SOURCE LINES 370-376 Running the DC Inversion ------------------------ To define the inversion object, we need to define the inversion problem and the set of directives. We can then run the inversion. .. GENERATED FROM PYTHON SOURCE LINES 376-385 .. code-block:: default # Here we combine the inverse problem and the set of directives dc_inversion = inversion.BaseInversion( dc_inverse_problem, directiveList=directives_list ) # Run inversion recovered_conductivity_model = dc_inversion.run(starting_conductivity_model) .. rst-class:: sphx-glr-script-out .. code-block:: none SimPEG.InvProblem is setting bfgsH0 to the inverse of the eval2Deriv. ***Done using same Solver, and solver_opts as the Simulation2DNodal problem*** model has any nan: 0 ============================ Inexact Gauss Newton ============================ # beta phi_d phi_m f |proj(x-g)-x| LS Comment ----------------------------------------------------------------------------- x0 has any nan: 0 0 1.45e+03 1.58e+04 0.00e+00 1.58e+04 3.00e+03 0 1 1.45e+03 1.94e+03 1.70e+00 4.40e+03 2.17e+02 0 2 4.83e+02 1.75e+03 1.83e+00 2.64e+03 3.66e+02 0 Skip BFGS 3 4.83e+02 6.13e+02 3.35e+00 2.23e+03 5.71e+01 0 4 1.61e+02 6.33e+02 3.28e+00 1.16e+03 1.92e+02 0 5 1.61e+02 1.76e+02 4.78e+00 9.44e+02 2.20e+01 0 6 5.37e+01 1.61e+02 4.72e+00 4.14e+02 7.49e+01 0 ------------------------- STOP! ------------------------- 1 : |fc-fOld| = 0.0000e+00 <= tolF*(1+|f0|) = 1.5820e+03 1 : |xc-x_last| = 2.8533e+00 <= tolX*(1+|x0|) = 3.1119e+01 0 : |proj(x-g)-x| = 7.4886e+01 <= tolG = 1.0000e-01 0 : |proj(x-g)-x| = 7.4886e+01 <= 1e3*eps = 1.0000e-02 0 : maxIter = 40 <= iter = 7 ------------------------- DONE! ------------------------- .. GENERATED FROM PYTHON SOURCE LINES 386-389 Plotting True and Recovered Conductivity Model ---------------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 389-448 .. code-block:: default # Recreate true conductivity model true_background_conductivity = 1e-2 true_conductor_conductivity = 1e-1 true_resistor_conductivity = 1e-3 true_conductivity_model = true_background_conductivity * np.ones(len(mesh)) ind_conductor = model_builder.getIndicesSphere(np.r_[-120.0, -180.0], 60.0, mesh.gridCC) true_conductivity_model[ind_conductor] = true_conductor_conductivity ind_resistor = model_builder.getIndicesSphere(np.r_[120.0, -180.0], 60.0, mesh.gridCC) true_conductivity_model[ind_resistor] = true_resistor_conductivity true_conductivity_model[~ind_active] = np.NaN # Plot True Model norm = LogNorm(vmin=1e-3, vmax=1e-1) fig = plt.figure(figsize=(9, 4)) ax1 = fig.add_axes([0.14, 0.17, 0.68, 0.7]) im = mesh.plot_image( true_conductivity_model, ax=ax1, grid=False, pcolor_opts={"norm": norm} ) ax1.set_xlim(-600, 600) ax1.set_ylim(-600, 0) ax1.set_title("True Conductivity Model") ax1.set_xlabel("x (m)") ax1.set_ylabel("z (m)") ax2 = fig.add_axes([0.84, 0.17, 0.03, 0.7]) cbar = mpl.colorbar.ColorbarBase(ax2, norm=norm, orientation="vertical") cbar.set_label("$S/m$", rotation=270, labelpad=15, size=12) plt.show() # Plot Recovered Model fig = plt.figure(figsize=(9, 4)) recovered_conductivity = conductivity_map * recovered_conductivity_model recovered_conductivity[~ind_active] = np.NaN ax1 = fig.add_axes([0.14, 0.17, 0.68, 0.7]) mesh.plot_image( recovered_conductivity, normal="Y", ax=ax1, grid=False, pcolor_opts={"norm": norm} ) ax1.set_xlim(-600, 600) ax1.set_ylim(-600, 0) ax1.set_title("Recovered Conductivity Model") ax1.set_xlabel("x (m)") ax1.set_ylabel("z (m)") ax2 = fig.add_axes([0.84, 0.17, 0.03, 0.7]) cbar = mpl.colorbar.ColorbarBase(ax2, norm=norm, orientation="vertical") cbar.set_label(r"$\sigma$ (S/m)", rotation=270, labelpad=15, size=12) plt.show() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /content/tutorials/06-ip/images/sphx_glr_plot_inv_2_dcip2d_003.png :alt: True Conductivity Model :srcset: /content/tutorials/06-ip/images/sphx_glr_plot_inv_2_dcip2d_003.png :class: sphx-glr-multi-img * .. image-sg:: /content/tutorials/06-ip/images/sphx_glr_plot_inv_2_dcip2d_004.png :alt: Recovered Conductivity Model :srcset: /content/tutorials/06-ip/images/sphx_glr_plot_inv_2_dcip2d_004.png :class: sphx-glr-multi-img .. GENERATED FROM PYTHON SOURCE LINES 449-452 Plotting Predicted DC Data and Misfit ------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 452-490 .. code-block:: default # Predicted data from recovered model dpred_dc = dc_inverse_problem.dpred dobs_dc = dc_data.dobs std_dc = dc_data.standard_deviation # Plot fig = plt.figure(figsize=(9, 15)) data_array = [np.abs(dobs_dc), np.abs(dpred_dc), (dobs_dc - dpred_dc) / std_dc] plot_title = ["Observed", "Predicted", "Normalized Misfit"] plot_units = ["S/m", "S/m", ""] scale = ["log", "log", "linear"] ax1 = 3 * [None] cax1 = 3 * [None] cbar = 3 * [None] cplot = 3 * [None] for ii in range(0, 3): ax1[ii] = fig.add_axes([0.1, 0.70 - 0.33 * ii, 0.7, 0.23]) cax1[ii] = fig.add_axes([0.83, 0.70 - 0.33 * ii, 0.05, 0.23]) cplot[ii] = plot_pseudosection( dc_data.survey, data_array[ii], "contourf", ax=ax1[ii], cax=cax1[ii], scale=scale[ii], cbar_label=plot_units[ii], mask_topography=True, contourf_opts={"levels": 25, "cmap": mpl.cm.viridis}, ) ax1[ii].set_title(plot_title[ii]) plt.show() .. image-sg:: /content/tutorials/06-ip/images/sphx_glr_plot_inv_2_dcip2d_005.png :alt: Observed, Predicted, Normalized Misfit :srcset: /content/tutorials/06-ip/images/sphx_glr_plot_inv_2_dcip2d_005.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 491-500 Starting/Reference Model for IP Inversion ----------------------------------------- Here, we would create starting and/or reference models for the IP inversion as well as the mapping from the model space to the active cells. Starting and reference models can be a constant background value or contain a-priori structures. Here, the starting model is the 1e-6 V/V. .. GENERATED FROM PYTHON SOURCE LINES 500-513 .. code-block:: default # Define conductivity model in S/m (or resistivity model in Ohm m) air_chargeability = 0.0 background_chargeability = 1e-6 active_map = maps.InjectActiveCells(mesh, ind_active, air_chargeability) nC = int(ind_active.sum()) chargeability_map = active_map # Define model starting_chargeability_model = background_chargeability * np.ones(nC) .. GENERATED FROM PYTHON SOURCE LINES 514-522 Define the Physics of the IP Simulation --------------------------------------- Here, we define the physics of the IP problem. For the chargeability, we require a mapping from the model space to the entire mesh. For the background conductivity/resistivity, we require the conductivity/resistivity on the entire mesh. .. GENERATED FROM PYTHON SOURCE LINES 522-532 .. code-block:: default ip_simulation = ip.Simulation2DNodal( mesh, survey=ip_survey, etaMap=chargeability_map, sigma=conductivity_map * recovered_conductivity_model, solver=Solver, storeJ=True, ) .. GENERATED FROM PYTHON SOURCE LINES 533-538 Define IP Inverse Problem ------------------------- Here we define the inverse problem in the same manner as the DC inverse problem. .. GENERATED FROM PYTHON SOURCE LINES 538-563 .. code-block:: default # Define the data misfit (Here we use weighted L2-norm) ip_data_misfit = data_misfit.L2DataMisfit(data=ip_data, simulation=ip_simulation) # Define the regularization (model objective function) ip_regularization = regularization.WeightedLeastSquares( mesh, indActive=ind_active, mapping=maps.IdentityMap(nP=nC), alpha_s=0.01, alpha_x=1, alpha_y=1, ) # Define how the optimization problem is solved. Here it is a projected # Gauss Newton with Conjugate Gradient solver. ip_optimization = optimization.ProjectedGNCG( maxIter=15, lower=0.0, upper=1000.0, maxIterCG=30, tolCG=1e-2 ) # Here we define the inverse problem that is to be solved ip_inverse_problem = inverse_problem.BaseInvProblem( ip_data_misfit, ip_regularization, ip_optimization ) .. GENERATED FROM PYTHON SOURCE LINES 564-569 Define IP Inversion Directives ------------------------------ Here we define the directives in the same manner as the DC inverse problem. .. GENERATED FROM PYTHON SOURCE LINES 569-586 .. code-block:: default update_sensitivity_weighting = directives.UpdateSensitivityWeights(threshold=1e-3) starting_beta = directives.BetaEstimate_ByEig(beta0_ratio=1e1) beta_schedule = directives.BetaSchedule(coolingFactor=2, coolingRate=1) save_iteration = directives.SaveOutputEveryIteration(save_txt=False) target_misfit = directives.TargetMisfit(chifact=1.0) update_jacobi = directives.UpdatePreconditioner() directives_list = [ update_sensitivity_weighting, starting_beta, beta_schedule, save_iteration, target_misfit, update_jacobi, ] .. GENERATED FROM PYTHON SOURCE LINES 587-592 Running the IP Inversion ------------------------ Here we define the directives in the same manner as the DC inverse problem. .. GENERATED FROM PYTHON SOURCE LINES 592-602 .. code-block:: default # Here we combine the inverse problem and the set of directives ip_inversion = inversion.BaseInversion( ip_inverse_problem, directiveList=directives_list ) # Run inversion recovered_chargeability_model = ip_inversion.run(starting_chargeability_model) .. rst-class:: sphx-glr-script-out .. code-block:: none SimPEG.InvProblem will set Regularization.reference_model to m0. SimPEG.InvProblem will set Regularization.reference_model to m0. SimPEG.InvProblem will set Regularization.reference_model to m0. SimPEG.InvProblem will set Regularization.reference_model to m0. SimPEG.InvProblem will set Regularization.reference_model to m0. SimPEG.InvProblem is setting bfgsH0 to the inverse of the eval2Deriv. ***Done using same Solver, and solver_opts as the Simulation2DNodal problem*** model has any nan: 0 =============================== Projected GNCG =============================== # beta phi_d phi_m f |proj(x-g)-x| LS Comment ----------------------------------------------------------------------------- x0 has any nan: 0 0 1.49e+03 1.73e+03 0.00e+00 1.73e+03 5.40e+03 0 ------------------------- STOP! ------------------------- 1 : |fc-fOld| = 0.0000e+00 <= tolF*(1+|f0|) = 1.7288e+02 0 : |xc-x_last| = 6.6768e-01 <= tolX*(1+|x0|) = 1.0001e-01 0 : |proj(x-g)-x| = 5.4005e+03 <= tolG = 1.0000e-01 0 : |proj(x-g)-x| = 5.4005e+03 <= 1e3*eps = 1.0000e-02 0 : maxIter = 15 <= iter = 1 ------------------------- DONE! ------------------------- .. GENERATED FROM PYTHON SOURCE LINES 603-606 Plotting True Model and Recovered Chargeability Model ----------------------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 606-666 .. code-block:: default sphere_chargeability = 1e-1 true_chargeability_model = np.zeros(len(mesh)) true_chargeability_model[ind_conductor] = sphere_chargeability true_chargeability_model[~ind_active] = np.NaN recovered_chargeability = chargeability_map * recovered_chargeability_model recovered_chargeability[~ind_active] = np.NaN # Plot True Model fig = plt.figure(figsize=(9, 4)) norm = mpl.colors.Normalize(vmin=0, vmax=sphere_chargeability) ax1 = fig.add_axes([0.14, 0.17, 0.68, 0.7]) mesh.plot_image( true_chargeability_model, ax=ax1, grid=False, pcolor_opts={"cmap": "plasma", "norm": norm}, ) ax1.set_xlim(-600, 600) ax1.set_ylim(-600, 0) ax1.set_title("True Chargeability Model") ax1.set_xlabel("x (m)") ax1.set_ylabel("z (m)") ax2 = fig.add_axes([0.84, 0.17, 0.03, 0.7]) cbar = mpl.colorbar.ColorbarBase( ax2, norm=norm, orientation="vertical", cmap=mpl.cm.plasma ) cbar.set_label("Intrinsic Chargeability (V/V)", rotation=270, labelpad=15, size=12) plt.show() # Plot Recovered Model fig = plt.figure(figsize=(9, 4)) ax1 = fig.add_axes([0.14, 0.17, 0.68, 0.7]) mesh.plot_image( recovered_chargeability, normal="Y", ax=ax1, grid=False, pcolor_opts={"cmap": "plasma", "norm": norm}, ) ax1.set_xlim(-600, 600) ax1.set_ylim(-600, 0) ax1.set_title("Recovered Chargeability Model") ax1.set_xlabel("x (m)") ax1.set_ylabel("z (m)") ax2 = fig.add_axes([0.84, 0.17, 0.03, 0.7]) cbar = mpl.colorbar.ColorbarBase( ax2, norm=norm, orientation="vertical", cmap=mpl.cm.plasma ) cbar.set_label("Intrinsic Chargeability (V/V)", rotation=270, labelpad=15, size=12) plt.show() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /content/tutorials/06-ip/images/sphx_glr_plot_inv_2_dcip2d_006.png :alt: True Chargeability Model :srcset: /content/tutorials/06-ip/images/sphx_glr_plot_inv_2_dcip2d_006.png :class: sphx-glr-multi-img * .. image-sg:: /content/tutorials/06-ip/images/sphx_glr_plot_inv_2_dcip2d_007.png :alt: Recovered Chargeability Model :srcset: /content/tutorials/06-ip/images/sphx_glr_plot_inv_2_dcip2d_007.png :class: sphx-glr-multi-img .. GENERATED FROM PYTHON SOURCE LINES 667-670 Plotting Predicted Data and Misfit ---------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 670-708 .. code-block:: default dpred_ip = ip_inverse_problem.dpred dobs_ip = ip_data.dobs std_ip = ip_data.standard_deviation # Plot fig = plt.figure(figsize=(9, 13)) data_array = [dobs_ip, dpred_ip, (dobs_ip - dpred_ip) / std_ip] plot_title = [ "Observed (as app. chg.)", "Predicted (as app. chg.)", "Normalized Misfit", ] plot_units = ["V/V", "V/V", ""] ax1 = 3 * [None] cax1 = 3 * [None] cbar = 3 * [None] cplot = 3 * [None] for ii in range(0, 3): ax1[ii] = fig.add_axes([0.15, 0.72 - 0.33 * ii, 0.65, 0.21]) cax1[ii] = fig.add_axes([0.81, 0.72 - 0.33 * ii, 0.03, 0.21]) cplot[ii] = plot_pseudosection( ip_data.survey, data_array[ii], "contourf", ax=ax1[ii], cax=cax1[ii], scale="linear", cbar_label=plot_units[ii], mask_topography=True, contourf_opts={"levels": 25, "cmap": mpl.cm.plasma}, ) ax1[ii].set_title(plot_title[ii]) plt.show() .. image-sg:: /content/tutorials/06-ip/images/sphx_glr_plot_inv_2_dcip2d_008.png :alt: Observed (as app. chg.), Predicted (as app. chg.), Normalized Misfit :srcset: /content/tutorials/06-ip/images/sphx_glr_plot_inv_2_dcip2d_008.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 1 minutes 37.630 seconds) **Estimated memory usage:** 18 MB .. _sphx_glr_download_content_tutorials_06-ip_plot_inv_2_dcip2d.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_inv_2_dcip2d.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_inv_2_dcip2d.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_