.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "content/tutorials/12-seismic/plot_inv_1_tomography_2D.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_content_tutorials_12-seismic_plot_inv_1_tomography_2D.py: Sparse Norm Inversion of 2D Seismic Tomography Data =================================================== Here we 2D straight ray tomography data to recover a velocity/slowness model. We formulate the inverse problem as an iteratively re-weighted least-squares (IRLS) optimization problem. For this tutorial, we focus on the following: - Defining the survey from xyz formatted data - Defining the inverse problem (data misfit, regularization, optimization) - Specifying directives for the inversion - Setting sparse and blocky norms - Plotting the recovered model .. GENERATED FROM PYTHON SOURCE LINES 20-23 Import Modules -------------- .. GENERATED FROM PYTHON SOURCE LINES 23-48 .. code-block:: default import os import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import tarfile from discretize import TensorMesh from SimPEG import ( data, maps, regularization, data_misfit, optimization, inverse_problem, directives, inversion, utils, ) from SimPEG.seismic import straight_ray_tomography as tomo # sphinx_gallery_thumbnail_number = 3 .. GENERATED FROM PYTHON SOURCE LINES 49-58 Define File Names ----------------- Here we provide the file paths to assets we need to run the inversion. The path to the true model is provided for comparison with the inversion results. These files are stored as a tar-file on our google cloud bucket: "https://storage.googleapis.com/simpeg/doc-assets/seismic.tar.gz" storage bucket where we have the data .. GENERATED FROM PYTHON SOURCE LINES 58-76 .. code-block:: default data_source = "https://storage.googleapis.com/simpeg/doc-assets/seismic.tar.gz" # download the data downloaded_data = utils.download(data_source, overwrite=True) # unzip the tarfile tar = tarfile.open(downloaded_data, "r") tar.extractall() tar.close() # path to the directory containing our data dir_path = downloaded_data.split(".")[0] + os.path.sep # files to work with data_filename = dir_path + "tomography2D_data.obs" model_filename = dir_path + "true_model_2D.txt" .. rst-class:: sphx-glr-script-out .. code-block:: none Downloading https://storage.googleapis.com/simpeg/doc-assets/seismic.tar.gz saved to: /home/vsts/work/1/s/tutorials/12-seismic/seismic.tar.gz Download completed! .. GENERATED FROM PYTHON SOURCE LINES 77-83 Load Data, Define Survey and Plot --------------------------------- Here we load the observed data, define the survey geometry and plot the data. .. GENERATED FROM PYTHON SOURCE LINES 83-137 .. code-block:: default # Load data dobs = np.loadtxt(str(data_filename)) # Extract source and receiver locations and the observed data xy_sources = dobs[:, 0:2] xy_receivers = dobs[:, 2:4] dobs = dobs[:, -1] # Define survey unique_sources, k = np.unique(xy_sources, axis=0, return_index=True) n_sources = len(k) k = np.r_[k, len(dobs) + 1] source_list = [] for ii in range(0, n_sources): # Receiver locations for source ii receiver_locations = xy_receivers[k[ii] : k[ii + 1], :] receiver_list = [tomo.Rx(receiver_locations)] # Source ii location source_location = xy_sources[k[ii], :] source_list.append(tomo.Src(receiver_list, source_location)) # Define survey survey = tomo.Survey(source_list) # Define a data object. Uncertainties are added later data_obj = data.Data(survey, dobs=dobs) # Plot n_source = len(source_list) n_receiver = len(xy_receivers) fig = plt.figure(figsize=(8, 5)) ax = fig.add_subplot(111) obs_string = [] for ii in range(0, n_source): x_plotting = xy_receivers[k[ii] : k[ii + 1], 0] dobs_plotting = dobs[k[ii] : k[ii + 1]] ax.plot(x_plotting, dobs_plotting) obs_string.append("source {}".format(ii + 1)) ax.set_xlabel("x (m)") ax.set_ylabel("arrival time (s)") ax.set_title("Positions vs. Arrival Time") ax.legend(obs_string, loc="upper right") plt.show() .. image-sg:: /content/tutorials/12-seismic/images/sphx_glr_plot_inv_1_tomography_2D_001.png :alt: Positions vs. Arrival Time :srcset: /content/tutorials/12-seismic/images/sphx_glr_plot_inv_1_tomography_2D_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 138-145 Assign Uncertainties -------------------- Inversion with SimPEG requires that we define standard deviation on our data. This represents our estimate of the noise in our data. In this case, we assign a 5 percent uncertainty to each datum. .. GENERATED FROM PYTHON SOURCE LINES 145-153 .. code-block:: default # Compute standard deviations std = 0.05 * np.abs(dobs) # Add standard deviations to data object data_obj.standard_deviation = std .. GENERATED FROM PYTHON SOURCE LINES 154-159 Defining a Tensor Mesh ---------------------- Here, we create the tensor mesh that will be used to invert the data. .. GENERATED FROM PYTHON SOURCE LINES 159-167 .. code-block:: default dh = 10.0 # cell width N = 21 # number of cells in X and Y direction hx = [(dh, N)] hy = [(dh, N)] mesh = TensorMesh([hx, hy], "CC") .. GENERATED FROM PYTHON SOURCE LINES 168-176 Starting/Reference Model and Mapping on Tensor Mesh --------------------------------------------------- Here, we create starting and/or reference models for the inversion as well as the mapping from the model space to the slowness. Starting and reference models can be a constant background value or contain a-priori structures. Here, the background is 3000 m/s. .. GENERATED FROM PYTHON SOURCE LINES 176-188 .. code-block:: default # Define density contrast values for each unit in g/cc. Don't make this 0! # Otherwise the gradient for the 1st iteration is zero and the inversion will # not converge. background_velocity = 3000.0 # Define mapping from model space to the slowness on mesh cells model_mapping = maps.ReciprocalMap() # Define starting model starting_model = background_velocity * np.ones(mesh.nC) .. GENERATED FROM PYTHON SOURCE LINES 189-195 Define the Physics ------------------ Here, we define the physics of the 2D straight ray tomography problem by using the simulation class. .. GENERATED FROM PYTHON SOURCE LINES 195-200 .. code-block:: default # Define the forward simulation. To do this we need the mesh, the survey and # the mapping from the model to the slowness value on each cell. simulation = tomo.Simulation(mesh, survey=survey, slownessMap=model_mapping) .. GENERATED FROM PYTHON SOURCE LINES 201-210 Define the Inverse Problem -------------------------- The inverse problem is defined by 3 things: 1) Data Misfit: a measure of how well our recovered model explains the field data 2) Regularization: constraints placed on the recovered model and a priori information 3) Optimization: the numerical approach used to solve the inverse problem .. GENERATED FROM PYTHON SOURCE LINES 210-235 .. code-block:: default # Define the data misfit. Here the data misfit is the L2 norm of the weighted # residual between the observed data and the data predicted for a given model. # Within the data misfit, the residual between predicted and observed data are # normalized by the data's standard deviation. dmis = data_misfit.L2DataMisfit(data=data_obj, simulation=simulation) # Define the regularization (model objective function). Here, 'p' defines the # the norm of the smallness term and 'q' defines the norm of the smoothness # term. reg = regularization.Sparse(mesh, mapping=maps.IdentityMap(nP=mesh.nC)) p = 0 qx = 0.5 qy = 0.5 reg.norms = [p, qx, qy] # Define how the optimization problem is solved. opt = optimization.ProjectedGNCG( maxIter=100, lower=0.0, upper=1e6, maxIterLS=20, maxIterCG=10, tolCG=1e-4 ) # Here we define the inverse problem that is to be solved inv_prob = inverse_problem.BaseInvProblem(dmis, reg, opt) .. GENERATED FROM PYTHON SOURCE LINES 236-243 Define Inversion Directives --------------------------- Here we define any directiveas that are carried out during the inversion. This includes the cooling schedule for the trade-off parameter (beta), stopping criteria for the inversion and saving inversion results at each iteration. .. GENERATED FROM PYTHON SOURCE LINES 243-263 .. code-block:: default # Reach target misfit for L2 solution, then use IRLS until model stops changing. update_IRLS = directives.Update_IRLS( f_min_change=1e-4, max_irls_iterations=30, coolEpsFact=1.5, beta_tol=1e-2, ) # Defining a starting value for the trade-off parameter (beta) between the data # misfit and the regularization. starting_beta = directives.BetaEstimate_ByEig(beta0_ratio=2e0) # Save output at each iteration saveDict = directives.SaveOutputEveryIteration(save_txt=False) # Define the directives as a list directives_list = [starting_beta, update_IRLS, saveDict] .. GENERATED FROM PYTHON SOURCE LINES 264-270 Running the Inversion --------------------- To define the inversion object, we need to define the inversion problem and the set of directives. We can then run the inversion. .. GENERATED FROM PYTHON SOURCE LINES 270-278 .. code-block:: default # Here we combine the inverse problem and the set of directives inv = inversion.BaseInversion(inv_prob, directives_list) # Run inversion recovered_model = inv.run(starting_model) .. rst-class:: sphx-glr-script-out .. code-block:: none /home/vsts/work/1/s/SimPEG/directives/directives.py:2008: UserWarning: Without a Linear preconditioner, convergence may be slow. Consider adding `Directives.UpdatePreconditioner` to your directives list SimPEG.InvProblem will set Regularization.reference_model to m0. SimPEG.InvProblem will set Regularization.reference_model to m0. SimPEG.InvProblem will set Regularization.reference_model to m0. SimPEG.InvProblem is setting bfgsH0 to the inverse of the eval2Deriv. ***Done using the default solver Pardiso and no solver_opts.*** model has any nan: 0 =============================== Projected GNCG =============================== # beta phi_d phi_m f |proj(x-g)-x| LS Comment ----------------------------------------------------------------------------- x0 has any nan: 0 0 2.58e-08 8.64e+02 0.00e+00 8.64e+02 1.27e-01 0 Reached starting chifact with l2-norm regularization: Start IRLS steps... irls_threshold 965.031330804864 1 1.29e-08 2.66e+01 7.91e+09 1.29e+02 2.42e-02 0 2 4.28e-08 1.31e+01 7.72e+09 3.44e+02 6.69e-02 0 3 7.06e-08 4.67e+01 5.63e+09 4.44e+02 8.82e-02 0 4 4.95e-08 9.28e+01 4.07e+09 2.94e+02 3.83e-02 0 5 4.04e-08 6.84e+01 3.79e+09 2.22e+02 2.83e-02 0 Skip BFGS ------------------------- STOP! ------------------------- 1 : |fc-fOld| = 7.2671e+01 <= tolF*(1+|f0|) = 8.6501e+01 1 : |xc-x_last| = 1.4067e+03 <= tolX*(1+|x0|) = 6.3001e+03 1 : |proj(x-g)-x| = 2.8320e-02 <= tolG = 1.0000e-01 0 : |proj(x-g)-x| = 2.8320e-02 <= 1e3*eps = 1.0000e-02 0 : maxIter = 100 <= iter = 5 ------------------------- DONE! ------------------------- .. GENERATED FROM PYTHON SOURCE LINES 279-282 Plotting True Model and Recovered Model --------------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 282-317 .. code-block:: default # Load the true model true_model = np.loadtxt(str(model_filename)) # Plot True Model fig = plt.figure(figsize=(6, 5.5)) ax1 = fig.add_axes([0.15, 0.15, 0.65, 0.75]) mesh.plot_image(true_model, ax=ax1, grid=True, pcolor_opts={"cmap": "viridis"}) ax1.set_title("True Model") ax2 = fig.add_axes([0.82, 0.15, 0.05, 0.75]) norm = mpl.colors.Normalize(vmin=np.min(true_model), vmax=np.max(true_model)) cbar = mpl.colorbar.ColorbarBase( ax2, norm=norm, orientation="vertical", cmap=mpl.cm.viridis ) cbar.set_label("Velocity (m/s)", rotation=270, labelpad=15, size=12) plt.show() # Plot Recovered Model fig = plt.figure(figsize=(6, 5.5)) ax1 = fig.add_axes([0.15, 0.15, 0.65, 0.75]) mesh.plot_image(recovered_model, ax=ax1, grid=True, pcolor_opts={"cmap": "viridis"}) ax1.set_title("Recovered Model") ax2 = fig.add_axes([0.82, 0.15, 0.05, 0.75]) norm = mpl.colors.Normalize(vmin=np.min(recovered_model), vmax=np.max(recovered_model)) cbar = mpl.colorbar.ColorbarBase( ax2, norm=norm, orientation="vertical", cmap=mpl.cm.viridis ) cbar.set_label("Velocity (m/s)", rotation=270, labelpad=15, size=12) plt.show() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /content/tutorials/12-seismic/images/sphx_glr_plot_inv_1_tomography_2D_002.png :alt: True Model :srcset: /content/tutorials/12-seismic/images/sphx_glr_plot_inv_1_tomography_2D_002.png :class: sphx-glr-multi-img * .. image-sg:: /content/tutorials/12-seismic/images/sphx_glr_plot_inv_1_tomography_2D_003.png :alt: Recovered Model :srcset: /content/tutorials/12-seismic/images/sphx_glr_plot_inv_1_tomography_2D_003.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 11.493 seconds) **Estimated memory usage:** 18 MB .. _sphx_glr_download_content_tutorials_12-seismic_plot_inv_1_tomography_2D.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_inv_1_tomography_2D.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_inv_1_tomography_2D.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_