.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "content/tutorials/10-vrm/plot_fwd_3_vrm_tem.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_content_tutorials_10-vrm_plot_fwd_3_vrm_tem.py: Forward Simulation Including Inductive Response =============================================== Here we use the modules *SimPEG.electromagnetics.viscous_remanent_magnetization* and *SimPEG.electromagnetics.time_domain* to simulation the transient response over a conductive and magnetically viscous Earth. We consider a small-loop, ground-based survey which uses a coincident loop geometry. Earth is comprised of a conductive pipe and resistive surface layer as well as a magnetically viscous top-soil. We will assume you have already viewed the previous VRM tutorials. For this tutorial, we focus on the following: - How to define the magnetic properties for a log-uniform relaxation model - How the TDEM response is different near and far away from strong conductors To first order, the total response is equal to the sum of the inductive and VRM responses. That is, we can model the inductive and VRM responses with separate simulations, then add them together to compute the total response. .. GENERATED FROM PYTHON SOURCE LINES 27-30 Import modules -------------- .. GENERATED FROM PYTHON SOURCE LINES 30-49 .. code-block:: Python import SimPEG.electromagnetics.viscous_remanent_magnetization as vrm import SimPEG.electromagnetics.time_domain as tdem from SimPEG import maps from discretize import TensorMesh, CylindricalMesh from discretize.utils import mkvc import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl try: from pymatsolver import Pardiso as Solver except ImportError: from SimPEG import SolverLU as Solver # sphinx_gallery_thumbnail_number = 3 .. GENERATED FROM PYTHON SOURCE LINES 50-56 Transmitter Locations, Receiver Locations and Time Channels ----------------------------------------------------------- Here were define the properties of the survey that will be used in both the TDEM and VRM simulations. .. GENERATED FROM PYTHON SOURCE LINES 56-70 .. code-block:: Python # Observation times for response (time channels) time_channels = np.logspace(-4, -2, 11) # Defining transmitter locations xtx, ytx, ztx = np.meshgrid(np.linspace(0, 200, 41), [0], [55]) source_locations = np.c_[mkvc(xtx), mkvc(ytx), mkvc(ztx)] ntx = np.size(xtx) # Define receiver locations xrx, yrx, zrx = np.meshgrid(np.linspace(0, 200, 41), [0], [50]) receiver_locations = np.c_[mkvc(xrx), mkvc(yrx), mkvc(zrx)] .. GENERATED FROM PYTHON SOURCE LINES 71-78 Simulate Inductive Response --------------------------- Here, we simulate the transient response on a cylindrical mesh. This simulation is a copy of the *Time-Domain Electromagnetic* tutorial for simulating the *Step-Off Response on a Cylindrical Mesh*. .. GENERATED FROM PYTHON SOURCE LINES 78-167 .. code-block:: Python # Define the waveform object for tdem simulation. Here we use the step-off. tdem_waveform = tdem.sources.StepOffWaveform(off_time=0.0) # Define survey object tdem_source_list = [] for ii in range(ntx): dbzdt_receiver = tdem.receivers.PointMagneticFluxTimeDerivative( receiver_locations[ii, :], time_channels, "z" ) tdem_receivers_list = [ dbzdt_receiver ] # Make a list containing all receivers even if just one tdem_source_list.append( tdem.sources.MagDipole( tdem_receivers_list, location=source_locations[ii], waveform=tdem_waveform, moment=1.0, orientation="z", ) ) tdem_survey = tdem.Survey(tdem_source_list) # Define cylindrical mesh hr = [(10.0, 50), (10.0, 10, 1.5)] hz = [(10.0, 10, -1.5), (10.0, 100), (10.0, 10, 1.5)] mesh = CylindricalMesh([hr, 1, hz], x0="00C") # Define model air_conductivity = 1e-8 background_conductivity = 1e-1 layer_conductivity = 1e-2 pipe_conductivity = 1e1 ind_active = mesh.gridCC[:, 2] < 0 model_map = maps.InjectActiveCells(mesh, ind_active, air_conductivity) conductivity_model = background_conductivity * np.ones(ind_active.sum()) ind_layer = (mesh.gridCC[ind_active, 2] > -200.0) & (mesh.gridCC[ind_active, 2] < -0) conductivity_model[ind_layer] = layer_conductivity ind_pipe = ( (mesh.gridCC[ind_active, 0] < 50.0) & (mesh.gridCC[ind_active, 2] > -10000.0) & (mesh.gridCC[ind_active, 2] < 0.0) ) conductivity_model[ind_pipe] = pipe_conductivity # Plot conductivity model mpl.rcParams.update({"font.size": 12}) fig = plt.figure(figsize=(5.5, 6)) plotting_map = maps.InjectActiveCells(mesh, ind_active, np.nan) log_model = np.log10(conductivity_model) # So scaling is log-scale ax1 = fig.add_axes([0.14, 0.1, 0.6, 0.85]) mesh.plot_image( plotting_map * log_model, ax=ax1, grid=False, clim=(np.log10(layer_conductivity), np.log10(pipe_conductivity)), ) ax1.set_title("Conductivity Model (Survey in red)") ax1.plot(receiver_locations[:, 0], receiver_locations[:, 2], "r.") ax2 = fig.add_axes([0.76, 0.1, 0.05, 0.85]) norm = mpl.colors.Normalize( vmin=np.log10(layer_conductivity), vmax=np.log10(pipe_conductivity) ) cbar = mpl.colorbar.ColorbarBase( ax2, norm=norm, orientation="vertical", format="$10^{%.1f}$" ) cbar.set_label("Conductivity [S/m]", rotation=270, labelpad=15, size=12) # Simulate the inductive response time_steps = [(5e-06, 20), (0.0001, 20), (0.001, 21)] tdem_simulation = tdem.simulation.Simulation3DMagneticFluxDensity( mesh, survey=tdem_survey, sigmaMap=model_map, solver=Solver ) tdem_simulation.time_steps = time_steps dpred_tdem = tdem_simulation.dpred(conductivity_model) .. image-sg:: /content/tutorials/10-vrm/images/sphx_glr_plot_fwd_3_vrm_tem_001.png :alt: Conductivity Model (Survey in red) :srcset: /content/tutorials/10-vrm/images/sphx_glr_plot_fwd_3_vrm_tem_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 168-175 Define VRM Survey ----------------- Here we define the sources, the receivers and the survey for the VRM simulation. A better description is provided in the tutorial *Response from a Magnetically Viscous Soil using OcTree*. .. GENERATED FROM PYTHON SOURCE LINES 175-204 .. code-block:: Python # Define the transmitter waveform. vrm_waveform = vrm.waveforms.StepOff(t0=0) vrm_source_list = [] for pp in range(0, receiver_locations.shape[0]): # Define the receivers loc_pp = np.reshape(receiver_locations[pp, :], (1, 3)) vrm_receivers_list = [ vrm.receivers.Point( loc_pp, times=time_channels, field_type="dbdt", orientation="z" ) ] # Define the source dipole_moment = [0.0, 0.0, 1.0] vrm_source_list.append( vrm.sources.MagDipole( vrm_receivers_list, mkvc(source_locations[pp, :]), dipole_moment, vrm_waveform, ) ) # Define the VRM survey vrm_survey = vrm.Survey(vrm_source_list) .. GENERATED FROM PYTHON SOURCE LINES 205-213 Defining the Mesh ----------------- Here we create the tensor mesh that will be used to simulate the VRM response. We are modeling the response from a magnetically viscous layer. As a result, we do not need to model the Earth at depth. For this example the layer is 20 m thick. .. GENERATED FROM PYTHON SOURCE LINES 213-223 .. code-block:: Python hx, ncx = 20, 50 hy, ncy = 20, 20 hz, ncz = 2, 10 npad = 5 hx = [(hx, npad, -1.3), (hx, ncx), (hx, npad, 1.3)] hy = [(hy, npad, -1.3), (hy, ncy), (hy, npad, 1.3)] hz = [(hz, ncz)] mesh = TensorMesh([hx, hy, hz], "CCN") .. GENERATED FROM PYTHON SOURCE LINES 224-231 Defining the model ------------------ For a log-uniform distribution of time-relaxation constants, the magnetic viscosity is defined by 4 parameters: chi0, dchi, tau1 and tau2. We must define these values for each cell. .. GENERATED FROM PYTHON SOURCE LINES 231-246 .. code-block:: Python # Amalgamated magnetic property for VRM (see Cowan, 2016) chi0_value = 0.0 dchi_value = 0.5 tau1_value = 1e-8 tau2_value = 1e0 chi0_model = chi0_value * np.ones(mesh.nC) dchi_model = dchi_value * np.ones(mesh.nC) tau1_model = tau1_value * np.ones(mesh.nC) tau2_model = tau2_value * np.ones(mesh.nC) # Cells below the Earth's surface and/or cells exhibiting magnetic viscosity. ind_active = np.ones(mesh.nC, dtype="bool") .. GENERATED FROM PYTHON SOURCE LINES 247-254 Define the Simulation --------------------- Unlike the previous VRM tutorials, we model the VRM response using the *Simulation3DLogUniform* formulation. For this simulation class, we must define the 4 parameters for each cell. .. GENERATED FROM PYTHON SOURCE LINES 254-268 .. code-block:: Python # Defining the problem vrm_simulation = vrm.Simulation3DLogUniform( mesh, survey=vrm_survey, indActive=ind_active, refinement_factor=1, refinement_distance=[100.0], chi0=chi0_model, dchi=dchi_model, tau1=tau1_model, tau2=tau2_model, ) .. GENERATED FROM PYTHON SOURCE LINES 269-272 Predict Data and Plot --------------------- .. GENERATED FROM PYTHON SOURCE LINES 272-321 .. code-block:: Python # Predict VRM response. Right now, non of the properties for the log-uniform # simulation are invertible. As a result, a model is not entered as an # argument when predicting the data. dpred_vrm = vrm_simulation.dpred() # Reshape the data vectors for plotting. n_times = len(time_channels) n_loc = receiver_locations.shape[0] dpred_tdem = np.reshape(dpred_tdem, (n_loc, n_times)) dpred_vrm = np.reshape(dpred_vrm, (n_loc, n_times)) dpred_total = dpred_tdem + dpred_vrm # TDEM Profile fig = plt.figure(figsize=(5, 5)) ax1 = fig.add_subplot(111) for ii in range(0, len(time_channels)): ax1.plot( receiver_locations[:, 0], -dpred_total[:, ii], "k" ) # -ve sign to plot -dBz/dt ax1.set_xlim((0, np.max(xtx))) ax1.set_xlabel("Easting [m]") ax1.set_ylabel("-dBz/dt [T/s]") ax1.set_title("Airborne TDEM Profile") fig = plt.figure(figsize=(10, 5)) # Decays over the pipe ax1 = fig.add_axes([0.1, 0.1, 0.35, 0.85]) ax1.loglog(time_channels, -dpred_tdem[0, :], "r", lw=2) ax1.loglog(time_channels, -dpred_vrm[0, :], "b", lw=2) ax1.loglog(time_channels, -dpred_total[0, :], "k", lw=2) ax1.set_xlim((np.min(time_channels), np.max(time_channels))) ax1.set_xlabel("time [s]") ax1.set_ylabel("-dBz/dt [T/s]") ax1.set_title("Response over the pipe (VRM negligible)") ax1.legend(["Inductive", "VRM", "Total"], loc="upper right") # Decay away from pipe ax2 = fig.add_axes([0.6, 0.1, 0.35, 0.85]) ax2.loglog(time_channels, -dpred_tdem[-1, :], "r", lw=2) ax2.loglog(time_channels, -dpred_vrm[-1, :], "b", lw=2) ax2.loglog(time_channels, -dpred_total[-1, :], "k", lw=2) ax2.set_xlim((np.min(time_channels), np.max(time_channels))) ax2.set_xlabel("time [s]") ax2.set_ylabel("-dBz/dt [T/s]") ax2.set_title("Response over background (VRM pollutes late time)") ax2.legend(["Inductive", "VRM", "Total"], loc="upper right") .. rst-class:: sphx-glr-horizontal * .. image-sg:: /content/tutorials/10-vrm/images/sphx_glr_plot_fwd_3_vrm_tem_002.png :alt: Airborne TDEM Profile :srcset: /content/tutorials/10-vrm/images/sphx_glr_plot_fwd_3_vrm_tem_002.png :class: sphx-glr-multi-img * .. image-sg:: /content/tutorials/10-vrm/images/sphx_glr_plot_fwd_3_vrm_tem_003.png :alt: Response over the pipe (VRM negligible), Response over background (VRM pollutes late time) :srcset: /content/tutorials/10-vrm/images/sphx_glr_plot_fwd_3_vrm_tem_003.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out .. code-block:: none CREATING A MATRIX .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 19.412 seconds) **Estimated memory usage:** 8 MB .. _sphx_glr_download_content_tutorials_10-vrm_plot_fwd_3_vrm_tem.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_fwd_3_vrm_tem.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_fwd_3_vrm_tem.py ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_