SimPEG.potential_fields.magnetics.Simulation3DIntegral.getJ#
- Simulation3DIntegral.getJ(m, f=None)[source]#
- Returns the full Jacobian. - The general definition of the linear forward simulation is: \[\mathbf{d} = \mathbf{G \, f}(\mathbf{m})\]- where \(\mathbf{f}\) is a mapping operator (optional) from the model space to a user-defined parameter space, and \(\mathbf{G}\) is an (n_data, n_param) linear operator. The - getJmethod forms and returns the full Jacobian:\[\mathbf{J}(\mathbf{m}) = \mathbf{G} \frac{\partial \mathbf{f}}{\partial \mathbf{m}}\]- for the model \(\mathbf{m}\) provided. When \(\mathbf{f}\) is the identity map (default), the Jacobian is no longer model-dependent and reduces to: \[\mathbf{J} = \mathbf{G}\]- Parameters:
- mnumpy.ndarray
- The model vector. 
- fNone
- Precomputed fields are not used to speed up the computation of the Jacobian for linear problems. 
 
- m
- Returns:
- J(n_data,n_param)numpy.ndarray
- \(J = G\frac{\partial f}{\partial\mathbf{m}}\). Where \(f\) is - model_map.
 
- J(