SimPEG.regularization.AmplitudeSmallness.f_m#
- AmplitudeSmallness.f_m(m)[source]#
Evaluate the regularization kernel function.
For smallness vector amplitude regularization, the regularization kernel function is:
\[\mathbf{f_m}(\mathbf{m}) = \mathbf{\bar{m}} = \bigg ( \Big [ \mathbf{m}_p - \mathbf{m}_p^{(ref)} \Big ]^2 + \Big [ \mathbf{m}_s - \mathbf{m}_s^{(ref)} \Big ]^2 + \Big [ \mathbf{m}_t - \mathbf{m}_t^{(ref)} \Big ]^2 \bigg )^{1/2}\]where the global set of model parameters \(\mathbf{m}\) defined at cell centers is ordered according to its primary (\(p\)), secondary (\(s\)) and tertiary (\(t\)) directions as follows:
\[\begin{split}\mathbf{m} = \begin{bmatrix} \mathbf{m}_p \\ \mathbf{m}_s \\ \mathbf{m}_t \end{bmatrix}\end{split}\]Likewise for the vector components of the reference model.
- Parameters:
- m
numpy.ndarray
The model.
- m
- Returns:
numpy.ndarray
The regularization kernel function evaluated at the model provided.