simpeg.electromagnetics.time_domain.simulation.BaseTDEMSimulation#
- class simpeg.electromagnetics.time_domain.simulation.BaseTDEMSimulation(mesh, survey=None, dt_threshold=1e-08, **kwargs)[source]#
Bases:
BaseTimeSimulation
,BaseEMSimulation
Base class for quasi-static TDEM simulation with finite volume.
This class is used to define properties and methods necessary for solving 3D time-domain EM problems. In the quasi-static regime, we ignore electric displacement, and Maxwell’s equations are expressed as:
\[\begin{split}\begin{align} \nabla \times \vec{e} + \frac{\partial \vec{b}}{\partial t} &= -\frac{\partial \vec{s}_m}{\partial t} \\ \nabla \times \vec{h} - \vec{j} &= \vec{s}_e \end{align}\end{split}\]where the constitutive relations between fields and fluxes are given by:
\(\vec{j} = \sigma \vec{e}\)
\(\vec{b} = \mu \vec{h}\)
and:
\(\vec{s}_m\) represents a magnetic source term
\(\vec{s}_e\) represents a current source term
Child classes of
BaseTDEMSimulation
solve the above expression numerically for various cases using mimetic finite volume and backward Euler time discretization.- Parameters:
- mesh
discretize.base.BaseMesh
The mesh.
- survey
time_domain.survey.Survey
The time-domain EM survey.
- dt_threshold
float
Threshold used when determining the unique time-step lengths.
- mesh
Attributes
Inverse of the factored system matrix for the DC resistivity problem.
Cell center inner product matrix.
Cell center property inner product matrix.
Cell center property inner product inverse matrix.
Cell center property inner product matrix.
Cell center property inner product inverse matrix.
Cell center property inner product matrix.
Cell center property inner product inverse matrix.
Cell center property inner product matrix.
Cell center property inner product inverse matrix.
Edge inner product matrix.
Edge inner product inverse matrix.
Edge property inner product matrix.
Edge property inner product inverse matrix.
Edge property inner product matrix.
Edge property inner product inverse matrix.
Edge property inner product matrix.
Edge property inner product inverse matrix.
Edge property inner product matrix.
Edge property inner product inverse matrix.
Face inner product matrix.
Face inner product inverse matrix.
Face property inner product matrix.
Face property inner product inverse matrix.
Face property inner product matrix.
Face property inner product inverse matrix.
Face property inner product matrix.
Face property inner product inverse matrix.
Face property inner product matrix.
Face property inner product inverse matrix.
Node inner product matrix.
Node inner product inverse matrix.
Node property inner product matrix.
Node property inner product inverse matrix.
Node property inner product matrix.
Node property inner product inverse matrix.
Node property inner product matrix.
Node property inner product inverse matrix.
Node property inner product matrix.
Node property inner product inverse matrix.
List of model-dependent attributes to clean upon model update.
SimPEG
Counter
object to store iterations and run-times.matrices to be deleted if the model for conductivity/resistivity is updated
Threshold used when determining the unique time-step lengths.
Mesh for the simulation.
The inversion model.
Magnetic permeability (h/m) physical property model.
Derivative of Magnetic Permeability (H/m) wrt the model.
Mapping of the inversion model to Magnetic Permeability (H/m).
Inverse magnetic permeability (m/h) physical property model.
Derivative of Inverse Magnetic Permeability (m/H) wrt the model.
Mapping of the inversion model to Inverse Magnetic Permeability (m/H).
Total number of time steps.
True if a model is necessary
Electrical resistivity (ohm m) physical property model.
Derivative of Electrical resistivity (Ohm m) wrt the model.
Mapping of the inversion model to Electrical resistivity (Ohm m).
Path to directory where sensitivity file is stored.
Electrical conductivity (s/m) physical property model.
Derivative of Electrical conductivity (S/m) wrt the model.
Mapping of the inversion model to Electrical conductivity (S/m).
Numerical solver used in the forward simulation.
Solver-specific parameters.
Whether to store inner product matrices
The TDEM survey object.
Initial time, in seconds, for the time-dependent forward simulation.
Time mesh for easy interpolation to observation times.
Time step lengths, in seconds, for the time domain simulation.
Evaluation times.
Verbose progress printout.
MccI
Vol
Methods
Jtvec
(m, v[, f])Compute the adjoint sensitivity matrix times a vector.
Jtvec_approx
(m, v[, f])Approximation of the Jacobian transpose times a vector for the model provided.
Jvec
(m, v[, f])Compute the sensitivity matrix times a vector.
Jvec_approx
(m, v[, f])Approximation of the Jacobian times a vector for the model provided.
MccMuDeriv
(u[, v, adjoint])Derivative of MccProperty with respect to the model.
MccMuIDeriv
(u[, v, adjoint])Derivative of MccPropertyI with respect to the model.
MccMuiDeriv
(u[, v, adjoint])Derivative of MccProperty with respect to the model.
MccMuiIDeriv
(u[, v, adjoint])Derivative of MccPropertyI with respect to the model.
MccRhoDeriv
(u[, v, adjoint])Derivative of MccProperty with respect to the model.
MccRhoIDeriv
(u[, v, adjoint])Derivative of MccPropertyI with respect to the model.
MccSigmaDeriv
(u[, v, adjoint])Derivative of MccProperty with respect to the model.
MccSigmaIDeriv
(u[, v, adjoint])Derivative of MccPropertyI with respect to the model.
MeMuDeriv
(u[, v, adjoint])Derivative of MeProperty with respect to the model.
MeMuIDeriv
(u[, v, adjoint])Derivative of MePropertyI with respect to the model.
MeMuiDeriv
(u[, v, adjoint])Derivative of MeProperty with respect to the model.
MeMuiIDeriv
(u[, v, adjoint])Derivative of MePropertyI with respect to the model.
MeRhoDeriv
(u[, v, adjoint])Derivative of MeProperty with respect to the model.
MeRhoIDeriv
(u[, v, adjoint])Derivative of MePropertyI with respect to the model.
MeSigmaDeriv
(u[, v, adjoint])Derivative of MeProperty with respect to the model.
MeSigmaIDeriv
(u[, v, adjoint])Derivative of MePropertyI with respect to the model.
MfMuDeriv
(u[, v, adjoint])Derivative of MfProperty with respect to the model.
MfMuIDeriv
(u[, v, adjoint])I Derivative of MfPropertyI with respect to the model.
MfMuiDeriv
(u[, v, adjoint])Derivative of MfProperty with respect to the model.
MfMuiIDeriv
(u[, v, adjoint])I Derivative of MfPropertyI with respect to the model.
MfRhoDeriv
(u[, v, adjoint])Derivative of MfProperty with respect to the model.
MfRhoIDeriv
(u[, v, adjoint])I Derivative of MfPropertyI with respect to the model.
MfSigmaDeriv
(u[, v, adjoint])Derivative of MfProperty with respect to the model.
MfSigmaIDeriv
(u[, v, adjoint])I Derivative of MfPropertyI with respect to the model.
MnMuDeriv
(u[, v, adjoint])Derivative of MnProperty with respect to the model.
MnMuIDeriv
(u[, v, adjoint])Derivative of MnPropertyI with respect to the model.
MnMuiDeriv
(u[, v, adjoint])Derivative of MnProperty with respect to the model.
MnMuiIDeriv
(u[, v, adjoint])Derivative of MnPropertyI with respect to the model.
MnRhoDeriv
(u[, v, adjoint])Derivative of MnProperty with respect to the model.
MnRhoIDeriv
(u[, v, adjoint])Derivative of MnPropertyI with respect to the model.
MnSigmaDeriv
(u[, v, adjoint])Derivative of MnProperty with respect to the model.
MnSigmaIDeriv
(u[, v, adjoint])Derivative of MnPropertyI with respect to the model.
dpred
([m, f])Predicted data for the model provided.
fields
(m)Compute and return the fields for the model provided.
Returns the fields for all sources at the initial time.
getInitialFieldsDeriv
(src, v[, adjoint, f])Derivative of the initial fields with respect to the model for a given source.
getSourceTerm
(tInd)Return the discrete source terms for the time index provided.
make_synthetic_data
(m[, relative_error, ...])Make synthetic data for the model and Gaussian noise provided.
residual
(m, dobs[, f])The data residual.
Galleries and Tutorials using simpeg.electromagnetics.time_domain.simulation.BaseTDEMSimulation
#
Time-domain CSEM for a resistive cube in a deep marine setting
EM: TDEM: Permeable Target, Inductive Source
EM: TDEM: 1D: Inversion with VTEM waveform
Heagy et al., 2017 1D RESOLVE and SkyTEM Bookpurnong Inversions
Heagy et al., 2017 1D FDEM and TDEM inversions
Forward Simulation Including Inductive Response
3D Forward Simulation for Transient Response on a Cylindrical Mesh
3D Forward Simulation with User-Defined Waveforms