Heagy et al., 2017 Casing Example#

Here, we use a primary-secondary approach to compute the sensitivity of an EM survey with respect to a parametric model of a block in a layered space.

If you run this example with reRun=False, stored results for the sensitivity will be downloaded and plotted. Otherwise, if reRun=True, the example will be re-run. Note that you will need modest computational resources to re-compute the sensitivity (it is a 3D EM problem!).

There are 6 plots that are produced. Figure 1 shows the primary current density (the current density due to the source, casing and layered background), Figure 2 shows the secondary source - the source current density due to the 3D conductivity structure present only in the secondary problem. Figure 3 shows the predicted data. Figures 4-6 show the sensitivity with respect to each of the 9 model parameters (the conductivity of the background, layer and block, the thickness of the layer and the x and y extents of the block).

This example is used in the paper

Lindsey J. Heagy, Rowan Cockett, Seogi Kang, Gudni K. Rosenkjaer, Douglas W. Oldenburg, A framework for simulation and inversion in electromagnetics, Computers & Geosciences, Volume 107, 2017, Pages 1-19, ISSN 0098-3004, http://dx.doi.org/10.1016/j.cageo.2017.06.018.

This example is available on figshare: https://doi.org/10.6084/m9.figshare.5036123

This example was updated for SimPEG 0.14.0 on January 31st, 2020 by Joseph Capriotti

  • Primary Current Density
  • (a) -950m Depth Slice
  • (a) Total E$_x$, (b) Total E$_y$, (c) Secondary E$_x$, (d) Secondary E$_y$
  • (a) Sensitivity of $E_x$ wrt log($\sigma_{back}$), (b) Sensitivity of $E_y$ wrt log($\sigma_{back}$), (c) Sensitivity of $E_x$ wrt log($\sigma_{layer}$), (d) Sensitivity of $E_y$ wrt log($\sigma_{layer}$), (e) Sensitivity of $E_x$ wrt log($\sigma_{block}$), (f) Sensitivity of $E_y$ wrt log($\sigma_{block}$)
  • (g) Sensitivity of $E_x$ wrt layer $z_0$, (h) Sensitivity of $E_y$ wrt layer $z_0$, (i) Sensitivity of $E_x$ wrt layer $h$, (j) Sensitivity of $E_y$ wrt layer $h$
  • (k) Sensitivity of $E_x$ wrt block $x_0$, (l) Sensitivity of $E_y$ wrt block $x_0$, (m) Sensitivity of $E_x$ wrt block $y_0$, (n) Sensitivity of $E_y$ wrt block $y_0$, (o) Sensitivity of $E_x$ wrt block $d_x$, (p) Sensitivity of $E_y$ wrt block $d_x$, (q) Sensitivity of $E_x$ wrt block $d_y$, (r) Sensitivity of $E_y$ wrt block $d_y$
Skin Depth: [np.float64(7071.067811865475)]
Downloading https://storage.googleapis.com/simpeg/papers/Heagyetal2016/Heagyetal2016Casing.hdf5
   saved to: /home/vsts/Downloads/simpegtemp/Heagyetal2016Casing.hdf5
Download completed!
Getting Primary Problem
Cyl Mesh Extent xmax: 88864.16819654894,: zmin: -289135.34091688367, zmax: 288135.8409168833
Building primary mapping
... done building primary mapping
... done building primary problem
Setting up primary survey
... done building primary survey
building secondary mapping
Secondary Mesh ...
 xmin, xmax, zmin, zmax:  -16593.292236328125 16593.292236328125 -16593.292236328125 16593.292236328125 -19170.57876586914 18170.57876586914
 nC, vnC 137700 (45, 45, 68)
... done building secondary mapping
Setting up Secondary Problem
... done setting up secondary problem
Building primaryMap2meshs
... done building primaryMap2meshs
Setting up Secondary Survey
... done secondary survey
Setting up Secondary Survey
... done secondary survey
Ignoring fixed y limits to fulfill fixed data aspect with adjustable data limits.
Ignoring fixed y limits to fulfill fixed data aspect with adjustable data limits.
Ignoring fixed y limits to fulfill fixed data aspect with adjustable data limits.
Ignoring fixed y limits to fulfill fixed data aspect with adjustable data limits.
Ignoring fixed y limits to fulfill fixed data aspect with adjustable data limits.
Ignoring fixed y limits to fulfill fixed data aspect with adjustable data limits.
Ignoring fixed y limits to fulfill fixed data aspect with adjustable data limits.
Ignoring fixed y limits to fulfill fixed data aspect with adjustable data limits.
Ignoring fixed x limits to fulfill fixed data aspect with adjustable data limits.
Ignoring fixed x limits to fulfill fixed data aspect with adjustable data limits.
Ignoring fixed x limits to fulfill fixed data aspect with adjustable data limits.
Ignoring fixed x limits to fulfill fixed data aspect with adjustable data limits.
Ignoring fixed x limits to fulfill fixed data aspect with adjustable data limits.
Ignoring fixed x limits to fulfill fixed data aspect with adjustable data limits.
Ignoring fixed x limits to fulfill fixed data aspect with adjustable data limits.
Ignoring fixed x limits to fulfill fixed data aspect with adjustable data limits.
Removing /home/vsts/Downloads/simpegtemp

import discretize
from simpeg import utils, maps, tests
from simpeg.electromagnetics import frequency_domain as FDEM, mu_0
from simpeg.utils.io_utils import download

import numpy as np
import scipy.sparse as sp
import time
import os

import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
from matplotlib import rcParams
import h5py

np.random.seed(42)
fontsize = 12
rcParams["font.size"] = fontsize


class PrimSecCasingExample(object):
    NAME = "PrimSec_5e6Casing_50Mu_05Hz_LargeCondBody"

    # -------------- SETUP MODEL PARAMS ---------------------------- #

    sigmaair = 1e-8  # air
    sigmaback = 1e-2  # background

    sigmacasing = 5.5e6  # casing
    sigmainside = 1  # inside the casing
    mucasing = 50  # casing permeability

    casing_l = 1000  # length of the casing
    casing_d = 10e-2  # 10cm diameter casing
    casing_t = 1e-2  # 1cm thickness

    # layer
    sigmalayer = 1.0 / 10.0
    layer_z = np.r_[-1000.0, -900.0]

    # 3D body
    sigmablock = 2.0
    block_x = np.r_[75.0, 475.0]
    block_y = np.r_[-125, 125.0]
    block_z = layer_z

    # Survey Params
    freqs = np.r_[0.5]  # frequencies 0.5
    dsz = -950.0  # down-hole z source location

    src_a = np.r_[0.0, 0.0, dsz]
    src_b = np.r_[1e4, 0.0, 0.0]  # return electrode is a ring, 200

    def __init__(self):
        # translate casing parameters to radial distances to outer casing wall,
        # inner casing wall, and casing length to z locations
        self.casing_r = self.casing_d / 2.0
        self.casing_a = self.casing_r - self.casing_t / 2.0  # inner radius
        self.casing_b = self.casing_r + self.casing_t / 2.0  # outer radius
        self.casing_z = np.r_[-self.casing_l, 0.0]

        # Display skin depth so we can ensure our mesh goes further.
        print(
            "\nSkin Depth: {}".format(
                [(500.0 / np.sqrt(self.sigmaback * _)) for _ in self.freqs]
            )
        )

    # -------------- Model --------------------------------- #
    @property
    def mtrue(self):
        # This is the model we are using to compute the sensitivity. Each of
        # these parameters would be considered unknown in an inversion. This
        # model is of a parametrized block in a layer
        #
        #   +--------------------------------------+
        #   |                                      |
        #   |                                      |
        #   |            background                |
        #   |                                      |
        #   |                                      |
        #   +--------------------+-------+---------+
        #   |                    |       |         |
        #   |      layer         | block |         |
        #   |                    |       |         |
        #   +--------------------+-------+---------+
        #   |                                      |
        #   |                                      |
        #   |            background                |
        #   |                                      |
        #   |                                      |
        #   +--------------------------------------+

        return np.hstack(
            np.r_[
                np.log(self.sigmaback),  # value in background
                np.log(self.sigmalayer),  # value in the layer
                np.log(self.sigmablock),  # value in the block
                self.layer_z.mean(),  # layer center
                self.layer_z[1] - self.layer_z[0],  # layer thickness
                self.block_x.mean(),  # block x_0
                self.block_y.mean(),  # block y_0
                self.block_x[1] - self.block_x[0],  # block dx
                self.block_y[1] - self.block_y[0],  # block dy
            ]
        )

    # ----------------------------------------------------------------- #
    # -------------- PRIMARY PROBLEM SETUP ---------------------------- #
    # ----------------------------------------------------------------- #

    @property
    def meshp(self):
        if getattr(self, "_meshp", None) is None:
            # -------------- Mesh Parameters ------------------ #
            # x-direction
            csx1, csx2 = 2.5e-3, 25.0  # fine cells near well bore
            pfx1, pfx2 = 1.3, 1.4  # padding factors: fine -> uniform
            ncx1 = np.ceil(self.casing_b / csx1 + 2)  # number of fine cells
            # (past casing wall)
            dx2 = 1000.0  # uniform mesh out to here
            npadx2 = 21  # padding out to infinity

            # z-direction
            csz = 0.05  # finest z-cells
            nza = 10  # number of fine cells above air-earth interface
            pfz = pfx2  # padding factor in z-direction

            # ------------- Assemble the Cyl Mesh ------------- #
            # pad nicely to second cell size
            npadx1 = np.floor(np.log(csx2 / csx1) / np.log(pfx1))
            hx1a = utils.unpack_widths([(csx1, ncx1)])
            hx1b = utils.unpack_widths([(csx1, npadx1, pfx1)])
            dx1 = sum(hx1a) + sum(hx1b)
            dx1 = np.floor(dx1 / csx2)
            hx1b *= (dx1 * csx2 - sum(hx1a)) / sum(hx1b)

            # second chunk of mesh
            ncx2 = np.ceil((dx2 - dx1) / csx2)
            hx2a = utils.unpack_widths([(csx2, ncx2)])
            hx2b = utils.unpack_widths([(csx2, npadx2, pfx2)])
            hx = np.hstack([hx1a, hx1b, hx2a, hx2b])

            # cell size, number of core cells, number of padding cells in the
            # x-direction
            ncz = int(np.ceil(np.diff(self.casing_z)[0] / csz)) + 10
            npadzu, npadzd = 43, 43

            # vector of cell widths in the z-direction
            hz = utils.unpack_widths(
                [(csz, npadzd, -pfz), (csz, ncz), (csz, npadzu, pfz)]
            )

            # primary mesh
            self._meshp = discretize.CylindricalMesh(
                [hx, 1.0, hz], [0.0, 0.0, -np.sum(hz[: npadzu + ncz - nza])]
            )

            print(
                "Cyl Mesh Extent xmax: {},: zmin: {}, zmax: {}".format(
                    self._meshp.cell_centers_x.max(),
                    self._meshp.cell_centers_z.min(),
                    self._meshp.cell_centers_z.max(),
                )
            )

        return self._meshp

    @property
    def indActivePrimary(self):
        return self.meshp.gridCC[:, 2] <= 0.0  # air cells

    @property
    def projectionMapPrimary(self):
        return maps.Projection(nP=9, index=np.r_[0, 1, 3, 4])

    @property
    def primaryMapping(self):
        # Setup Pimary Maps:
        # we want to simulate on a physical property model that
        # consists of casing in a layered background. Air cells are included.
        # Our "model", that we are considering when computing the sensitivity,
        # consists of the layered background and block, so the casing and air
        # cells are inactive parts of the model and need to be appropriately
        # injected during the construction of the primary model

        if getattr(self, "_primaryMapping", None) is None:
            print("Building primary mapping")

            # inject parameters we want to invert for into the full casing
            # model
            valInactive = np.r_[
                np.log(self.sigmacasing),  # log conductivity of the casing
                np.log(self.sigmainside),  # log conductivity fluid inside
                # casing
                self.casing_r,  # radius of the casing (to its center)
                self.casing_t,  # casing thickness
                self.casing_z[0],  # bottom of casing (at depth)
                self.casing_z[1],  # top of casing (at surface)
            ]

            # inject casing parameters so they are included in the construction
            # of the layered background + casing
            injectCasingParams = maps.InjectActiveCells(
                None, active_cells=np.r_[0, 1, 4, 5], value_inactive=valInactive, nC=10
            )

            # maps a list of casing parameters to the cyl mesh (below the
            # subsurface)
            paramMapPrimary = maps.ParametricCasingAndLayer(
                self.meshp, active_cells=self.indActivePrimary, slopeFact=1e4
            )

            # inject air cells
            injActMapPrimary = maps.InjectActiveCells(
                self.meshp, self.indActivePrimary, np.log(self.sigmaair)
            )

            # map from log conductivity to conductivity
            expMapPrimary = maps.ExpMap(self.meshp)

            # assemble the primary mapping
            primaryMapping = (
                expMapPrimary
                * injActMapPrimary  # log(sigma) --> sigma
                * paramMapPrimary  # log(sigma) below surface --> include air
                * injectCasingParams  # parametric --> casing + layered earth  # parametric layered earth --> parametric
                *
                # layered earth + casing
                self.projectionMapPrimary  # grab relevant parameters from full
                # model (eg. ignore block)
            )

            self._paramMapPrimary = paramMapPrimary
            self._primaryMapping = primaryMapping

            print("... done building primary mapping")

        return self._primaryMapping

    @property
    def muModel(self):
        # Mu Model
        # here, we want to consider variable magnetic permeability in the
        # simulation. The only permeable item in the domain is the casing.
        if getattr(self, "_muModel", None) is None:
            if getattr(self, "_paramMapPrimary", None) is None:
                self.primaryMapping

            muMap = (
                maps.InjectActiveCells(self.meshp, self.indActivePrimary, mu_0)
                * self._paramMapPrimary
            )

            muModel = muMap * np.hstack(
                np.r_[
                    mu_0,  # val Background
                    mu_0,  # val Layer
                    mu_0 * self.mucasing,  # val Casing
                    mu_0,  # val inside Casing
                    self.layer_z.mean(),  # layer center
                    self.layer_z[1] - self.layer_z[0],  # layer thickness
                    self.casing_r,  # casing radius
                    self.casing_t,  # casing thickness
                    self.casing_z[0],  # casing bottom
                    self.casing_z[1],  # casing top
                ]
            )
            self._muModel = muModel
        return self._muModel

    @property
    def primaryProblem(self):
        if getattr(self, "_primaryProblem", None) is None:
            # define a custom prop map to include variable mu that we are not
            # inverting for - This will change when we improve the propmap!
            print("Getting Primary Problem")

            # class CasingEMPropMap(maps.PropMap):

            #     sigma = maps.Property(
            #                 "Electrical Conductivity", defaultInvProp=True,
            #                 propertyLink=('rho', maps.ReciprocalMap)
            #     )
            #     mu = maps.Property(
            #             "Inverse Magnetic Permeability",
            #             defaultVal=self.muModel,
            #             propertyLink=('mui', maps.ReciprocalMap)
            #     )
            #     rho = maps.Property(
            #             "Electrical Resistivity",
            #             propertyLink=('sigma', maps.ReciprocalMap)
            #     )
            #     mui = maps.Property(
            #             "Inverse Magnetic Permeability",
            #             defaultVal=1./self.muModel,
            #             propertyLink=('mu', maps.ReciprocalMap)
            #     )

            # # set the problem's propmap
            # FDEM.Simulation3DMagneticField.PropMap = CasingEMPropMap

            # use H-J formulation for source with vertical current density and
            # cylindrical symmetry (h faster on cyl --> less edges than faces)
            primaryProblem = FDEM.Simulation3DMagneticField(
                self.meshp, sigmaMap=self.primaryMapping
            )
            primaryProblem.mu = self.muModel

            self._primaryProblem = primaryProblem

            print("... done building primary problem")

        return self._primaryProblem

    @property
    def primarySurvey(self):
        if getattr(self, "_primarySurvey", None) is None:
            print("Setting up primary survey")

            def setupPrimarySource(plotIt=False):
                # Construct a downhole source that is coupled to the casing
                meshp = self.meshp
                src_a = self.src_a
                src_b = self.src_b
                casing_a = self.casing_a

                # downhole source
                dg_x = np.zeros(meshp.vnF[0], dtype=complex)
                dg_y = np.zeros(meshp.vnF[1], dtype=complex)
                dg_z = np.zeros(meshp.vnF[2], dtype=complex)

                # vertically directed wire in borehole
                # go through the center of the well
                dgv_indx = meshp.gridFz[:, 0] < meshp.h[0].min()
                dgv_indz = (meshp.gridFz[:, 2] >= src_a[2]) & (
                    meshp.gridFz[:, 2] <= src_b[2]
                )
                dgv_ind = dgv_indx & dgv_indz
                dg_z[dgv_ind] = -1.0

                # couple to the casing downhole - top part
                dgh_indx = meshp.gridFx[:, 0] <= casing_a + meshp.h[0].min() * 2

                # couple to the casing downhole - bottom part
                dgh_indz2 = (meshp.gridFx[:, 2] <= src_a[2]) & (
                    meshp.gridFx[:, 2] > src_a[2] - meshp.h[2].min()
                )
                dgh_ind2 = dgh_indx & dgh_indz2
                dg_x[dgh_ind2] = 1.0

                # horizontally directed wire
                sgh_indx = meshp.gridFx[:, 0] <= src_b[0]
                sgh_indz = (meshp.gridFx[:, 2] > meshp.h[2].min()) & (
                    meshp.gridFx[:, 2] < 2 * meshp.h[2].min()
                )
                sgh_ind = sgh_indx & sgh_indz
                dg_x[sgh_ind] = -1.0

                # return electrode
                sgv_indx = (meshp.gridFz[:, 0] > src_b[0] * 0.9) & (
                    meshp.gridFz[:, 0] < src_b[0] * 1.1
                )
                sgv_indz = (meshp.gridFz[:, 2] >= -meshp.h[2].min()) & (
                    meshp.gridFz[:, 2] < 2 * meshp.h[2].min()
                )
                sgv_ind = sgv_indx & sgv_indz
                dg_z[sgv_ind] = 1.0

                # assemble the source (downhole grounded primary)
                dg = np.hstack([dg_x, dg_y, dg_z])
                dg_p = [
                    FDEM.Src.RawVec_e([], _, dg / meshp.face_areas) for _ in self.freqs
                ]

                # if plotIt:
                #     # Plot the source to make sure the path is infact
                #     # connected

                #     fig, ax = plt.subplots(1, 1, figsize=(6, 4))
                #     meshp.plot_grid(ax=ax)
                #     ax.plot(meshp.gridFz[dgv_ind, 0], meshp.gridFz[dgv_ind, 2], 'rd')
                #     ax.plot(meshp.gridFx[dgh_ind2, 0], meshp.gridFx[dgh_ind2, 2], 'rd')
                #     ax.plot(meshp.gridFz[sgv_ind, 0], meshp.gridFz[sgv_ind, 2], 'rd')
                #     ax.plot(meshp.gridFx[sgh_ind, 0], meshp.gridFx[sgh_ind, 2], 'rd')

                #     ax.set_title('downhole casing source on mesh')

                #     ax.set_xlim([0, 1.1e4])
                #     ax.set_ylim([-1100., 0.5])

                return dg_p

            source_list = setupPrimarySource()  # create primary source
            self._primarySurvey = FDEM.Survey(source_list)  # primary survey
            print("... done building primary survey")
        return self._primarySurvey

    def solvePrimary(self, primaryProblem, m=None, saveFields=False):
        if m is None:
            m = self.mtrue
        print("solving primary ...")
        t0 = time.time()
        primfields = primaryProblem.fields(m)
        t1 = time.time()
        print("Done solving primary fields, time {} ".format(t1 - t0))

        return primfields

    def plotPrimaryMesh(self):
        fig, ax = plt.subplots(1, 1, figsize=(6, 4))
        self.meshp.plot_grid(ax=ax)
        plt.title("Cyl Mesh")
        return ax

    def plotPrimaryProperties(self):
        fig, ax = plt.subplots(1, 2, figsize=(10, 4))
        f = self.meshp.plot_image(
            self.muModel / mu_0,
            ax=ax[0],
            pcolor_opts={"cmap": plt.get_cmap("viridis")},
            grid=False,
        )
        plt.colorbar(f[0], ax=ax[0])
        ax[0].set_xlim([0, 1.0])
        ax[0].set_ylim([-1.5e3, 500])
        ax[0].set_title("mu_r")

        f = self.meshp.plot_image(
            np.log10(self.primaryMapping * self.mtrue),
            ax=ax[1],
            pcolor_opts={"cmap": plt.get_cmap("viridis")},
            grid=False,
        )
        plt.colorbar(f[0], ax=ax[1])
        ax[1].set_xlim([0, 1.0])
        ax[1].set_ylim([-1.5e3, 500])
        ax[1].set_title("log10 sigma")

        plt.tight_layout()
        return ax

    # ----------------------------------------------------------------- #
    # -------------- SECONDARY PROBLEM SETUP -------------------------- #
    # ----------------------------------------------------------------- #

    # -------------- MESH  -------------------------------------------- #

    @property
    def meshs(self):
        if getattr(self, "_meshs", None) is None:
            csx, ncx, npadx = 50, 21, 12
            csy, ncy, npady = 50, 21, 12
            csz, ncz, npadz = 25, 40, 14
            pf = 1.5

            hx = utils.unpack_widths([(csx, npadx, -pf), (csx, ncx), (csx, npadx, pf)])
            hy = utils.unpack_widths([(csy, npady, -pf), (csy, ncy), (csy, npady, pf)])
            hz = utils.unpack_widths([(csz, npadz, -pf), (csz, ncz), (csz, npadz, pf)])

            x0 = np.r_[-hx.sum() / 2.0, -hy.sum() / 2.0, -hz[: npadz + ncz].sum()]
            self._meshs = discretize.TensorMesh([hx, hy, hz], x0=x0)

            print("Secondary Mesh ... ")
            print(
                " xmin, xmax, zmin, zmax: ",
                self._meshs.cell_centers_x.min(),
                self._meshs.cell_centers_x.max(),
                self._meshs.cell_centers_y.min(),
                self._meshs.cell_centers_y.max(),
                self._meshs.cell_centers_z.min(),
                self._meshs.cell_centers_z.max(),
            )
            print(" nC, vnC", self._meshs.nC, self._meshs.vnC)

        return self._meshs

    @property
    def indActive(self):
        return self.meshs.gridCC[:, 2] <= 0.0  # air cells

    @property
    def injActMap(self):
        return maps.InjectActiveCells(self.meshs, self.indActive, np.log(self.sigmaair))

    @property
    def expMap(self):
        return maps.ExpMap(self.meshs)

    @property
    def mapping(self):
        # secondary mapping
        # here, we construct the parametric mapping to take the parameters
        # describing the block in a layered space and map it to a conductivity
        # model on our mesh
        if getattr(self, "_mapping", None) is None:
            print("building secondary mapping")
            paramMap = maps.ParametricBlockInLayer(
                self.meshs, active_cells=self.indActive
            )
            self._mapping = (
                self.expMap
                * self.injActMap  # log sigma --> sigma
                * paramMap  # inject air cells  # block in a layered space (subsurface)
            )
            print("... done building secondary mapping")

        return self._mapping

    @property
    def primaryMap2meshs(self):
        if getattr(self, "_primaryMap2mesh", None) is None:
            # map the primary model to the secondary mesh (layer without the
            # block)
            print("Building primaryMap2meshs")
            paramMapPrimaryMeshs = maps.ParametricLayer(
                self.meshs, active_cells=self.indActive
            )

            self._primaryMap2mesh = (
                self.expMap
                * self.injActMap  # log sigma --> sigma
                * paramMapPrimaryMeshs  # include air cells
                * self.projectionMapPrimary  # parametrized layer  # grab correct indices
            )
            print("... done building primaryMap2meshs")
        return self._primaryMap2mesh

    # -------------- PROBLEM and SURVEY ---------------------------- #
    def setupSecondaryProblem(self, mapping=None):
        print("Setting up Secondary Problem")
        if mapping is None:
            mapping = [("sigma", maps.IdentityMap(self.meshs))]
        sec_problem = FDEM.Simulation3DElectricField(self.meshs, sigmaMap=mapping)
        print("... done setting up secondary problem")
        return sec_problem

    def setupSecondarySurvey(self, primaryProblem, primarySurvey, map2meshSecondary):
        print("Setting up Secondary Survey")

        nx = 41
        ny = nx
        rx_x, rx_y = 2 * [np.linspace(-2050, 2050, nx)]
        self.rxlocs = utils.ndgrid([rx_x, rx_y, np.r_[-1]])
        self.rx_x = self.rxlocs[:, 0].reshape(nx, ny, order="F")
        self.rx_y = self.rxlocs[:, 1].reshape(nx, ny, order="F")

        rx_ex = FDEM.Rx.PointElectricField(
            self.rxlocs, orientation="x", component="real"
        )
        rx_ey = FDEM.Rx.PointElectricField(
            self.rxlocs, orientation="y", component="real"
        )

        RxList = [rx_ex, rx_ey]

        sec_src = [
            FDEM.Src.PrimSecMappedSigma(
                RxList,
                freq,
                primaryProblem,
                primarySurvey,
                map2meshSecondary=map2meshSecondary,
            )
            for freq in self.freqs
        ]
        print("... done secondary survey")

        return FDEM.Survey(sec_src)

    # -------------- SOLVE ---------------------------- #
    def solveSecondary(self, sec_problem, sec_survey, m, plotIt=False):
        sec_problem.survey = sec_survey

        print("Solving Secondary")
        t0 = time.time()
        fields = sec_problem.fields(m)
        dpred = sec_problem.dpred(m, f=fields)
        t1 = time.time()
        print(f" ...done.   secondary time {t1 - t0}")

        return fields, dpred

    # ----------------------------------------------------------------- #
    # ------------ PLOTTING ------------------------------------------- #
    # ----------------------------------------------------------------- #

    def plotPrimaryFields(self, primaryFields, saveFig=False):
        # Interpolate onto a cartesian mesh with uniform cell sizes (better for
        # streamplots)
        cs = 5.0
        xmax = 1000.0
        zmax = 1200.0
        csx, ncx = cs, np.ceil(xmax / cs)
        csz, ncz = cs, np.ceil(zmax / cs)

        # define the tensor mesh
        meshcart = discretize.TensorMesh(
            [[(csx, ncx)], [(csx, 1)], [(csz, ncz)]], [0, -csx / 2.0, -zmax]
        )

        projF = self.meshp.get_interpolation_matrix_cartesian_mesh(meshcart, "F")

        jcart = projF * primaryFields[:, "j"]

        fig, ax = plt.subplots(1, 1, figsize=(6, 7.75))
        f = meshcart.plot_slice(
            jcart.real,
            normal="Y",
            v_type="F",
            view="vec",
            pcolor_opts={"norm": LogNorm(), "cmap": plt.get_cmap("viridis")},
            stream_opts={"color": "k", "arrowsize": 2},
            ax=ax,
        )
        plt.colorbar(f[0], label="real current density (A/m$^2$)")

        ax.set_adjustable("box")
        ax.axis("equal")
        ax.set_ylim([-1200.0, 0.0])
        ax.set_xlim([0.0, 750.0])
        ax.set_title("Primary Current Density")
        ax.set_xlabel("radius (m)", fontsize=fontsize)
        ax.set_ylabel("z (m)", fontsize=fontsize)

        if saveFig is True:
            fig.savefig("primaryCurrents", dpi=300, bbox_inches="tight")

        return ax

    def plotSecondarySource(self, primaryFields, saveFig=False):
        # get source term
        secondaryProblem = self.setupSecondaryProblem(mapping=self.mapping)
        secondaryProblem.model = self.mtrue
        secondarySurvey = self.setupSecondarySurvey(
            self.primaryProblem, self.primarySurvey, self.primaryMap2meshs
        )
        src = secondarySurvey.source_list[0]
        s_e = src.s_e(secondaryProblem, f=primaryFields)

        # Mesh to interpolate onto for stream plots
        cs = 5.0
        csz = 0.5
        xmin, xmax = -600.0, 600.0
        ymin, ymax = -600.0, 600.0
        zmin, zmax = -950.0 - csz / 2.0, -950.0 + csz / 2.0

        ncx = np.ceil((xmax - xmin) / cs)
        ncy = np.ceil((ymax - ymin) / cs)
        ncz = np.ceil((zmax - zmin) / cs)

        meshs_plt = discretize.TensorMesh(
            [[(cs, ncx)], [(cs, ncy)], [(cs, ncz)]],
            [
                xmin + (xmin + xmax) / 2.0,
                ymin + (ymin + ymax) / 2.0,
                zmin + (zmin + zmax) / 2.0,
            ],
        )

        # Construct interpolation matrices
        Px = self.meshs.get_interpolation_matrix(meshs_plt.gridEx, location_type="Ex")
        Py = self.meshs.get_interpolation_matrix(meshs_plt.gridEy, location_type="Ey")
        Pz = self.meshs.get_interpolation_matrix(meshs_plt.gridEz, location_type="Ez")
        P = sp.vstack([Px, Py, Pz])

        # for regions outside of the anomalous block, the source current
        # density is identically zero. For plotting, we do not want to
        # interpolate into this region, so we build up masked arrays.
        maskme_ex = (
            (self.meshs.gridEx[:, 0] <= self.block_x[0])
            | (self.meshs.gridEx[:, 0] >= self.block_x[1])
            | (self.meshs.gridEx[:, 1] <= self.block_y[0])
            | (self.meshs.gridEx[:, 1] >= self.block_y[1])
        )

        maskme_ey = (
            (self.meshs.gridEy[:, 0] <= self.block_x[0])
            | (self.meshs.gridEy[:, 0] >= self.block_x[1])
            | (self.meshs.gridEy[:, 1] <= self.block_y[0])
            | (self.meshs.gridEy[:, 1] >= self.block_y[1])
        )

        maskme_ez = (
            (self.meshs.gridEz[:, 0] <= self.block_x[0])
            | (self.meshs.gridEz[:, 0] >= self.block_x[1])
            | (self.meshs.gridEz[:, 1] <= self.block_y[0])
            | (self.meshs.gridEz[:, 1] >= self.block_y[1])
        )

        maskme_e = np.hstack([maskme_ex, maskme_ey, maskme_ez])

        # interpolate down a layer
        s_e_interp = s_e.real.copy()
        s_e_interp[maskme_e] = np.nan
        s_e_plt = P * s_e_interp

        # keep masked array for stream plots
        s_e_stream_cc = meshs_plt.aveE2CCV * s_e_plt

        # re-assign zero for amplitude of the real current density
        s_e_abs_cc = s_e_stream_cc.reshape(meshs_plt.nC, 3, order="F")
        s_e_abs_cc = np.sqrt((s_e_abs_cc**2.0).sum(axis=1))
        s_e_abs_cc[np.isnan(s_e_abs_cc)] = 0.0
        s_e_stream_cc = np.ma.masked_where(np.isnan(s_e_stream_cc), s_e_stream_cc)

        # plot
        fig, ax = plt.subplots(1, 1, figsize=(7.5, 6))

        # f = meshs_plt.plot_slice(
        #     np.ma.masked_where(maskme_e, s_e_plt.real),
        #     normal='Z',
        #     v_type='CCv',
        #     view='abs',
        #     pcolor_opts={'cmap':plt.get_cmap('viridis')}, ax=ax
        # )

        f = ax.pcolormesh(
            meshs_plt.cell_centers_x,
            meshs_plt.cell_centers_y,
            (s_e_abs_cc).reshape(meshs_plt.vnC[:2], order="F").T,
            cmap=plt.get_cmap("viridis"),
        )

        ax.streamplot(
            meshs_plt.cell_centers_x,
            meshs_plt.cell_centers_y,
            s_e_stream_cc[: meshs_plt.nC].reshape(meshs_plt.vnC[:2]),
            s_e_stream_cc[meshs_plt.nC : meshs_plt.nC * 2].reshape(meshs_plt.vnC[:2]),
            density=1.5,
            color="k",
            arrowsize=2,
        )

        ax.set_xlabel("x (m)", fontsize=fontsize)
        ax.set_ylabel("y (m)", fontsize=fontsize)

        cb = plt.colorbar(f, label="real current density (A/m$^2$)")
        cb.formatter.set_powerlimits((0, 0))
        cb.update_ticks()

        ax.set_adjustable("box")
        ax.axis("equal")
        ax.axis([-600, 600, -600, 600])
        ax.set_title("(a) -950m Depth Slice", fontsize=fontsize)
        # interact(plotMe, ind=[0, meshs_plt.vnC[2]-1])

        if saveFig is True:
            fig.savefig("secondarySource", dpi=300)

        return ax

    def plotData(self, data_block, data_back, saveFig=False):
        XLIM = np.r_[-1500, 1500]
        YLIM = np.r_[-1500, 1500]

        sec_survey = self.setupSecondarySurvey(
            self.primaryProblem, self.primarySurvey, self.primaryMap2meshs
        )
        src = sec_survey.source_list[0]
        rx0 = src.receiver_list[0]

        nx = int(np.sqrt(len(rx0.locations)))
        ny = nx

        def plotDataFun(
            ax,
            plotme,
            num=50,
            plotBlock=True,
            xlim=XLIM,
            ylim=YLIM,
            clim=None,
            clabel="Electric Field (V/m)",
            xlabel="x (m)",
            ylabel="y (m)",
            title=None,
        ):
            if clim is None:
                clim = np.absolute(plotme).max() * np.r_[-1.0, 1.0]
            elif clim is not None:
                clim = clim

            f = ax.contourf(
                self.rx_x,
                self.rx_y,
                plotme,
                num,
                cmap=plt.get_cmap("viridis"),
                vmin=clim[0],
                vmax=clim[1],
            )
            ax.set_adjustable("box")
            ax.axis("equal")
            ax.set_xlim(xlim)
            ax.set_ylim(ylim)
            cb = plt.colorbar(f, ax=ax, label=clabel)
            cb.formatter.set_powerlimits((0, 0))
            cb.update_ticks()

            if xlabel is not None:
                ax.set_xlabel(xlabel)
            if ylabel is not None:
                ax.set_ylabel(ylabel)
            if title is not None:
                ax.set_title(title)

            if plotBlock:
                ax.plot(
                    np.r_[
                        self.block_x[0],
                        self.block_x[0],
                        self.block_x[1],
                        self.block_x[1],
                        self.block_x[0],
                    ],
                    np.r_[
                        self.block_y[0],
                        self.block_y[1],
                        self.block_y[1],
                        self.block_y[0],
                        self.block_y[0],
                    ],
                    color="w",
                    linestyle="-",
                )
            return ax

        ncontours = 50

        fig, ax = plt.subplots(2, 2, figsize=(12, 10))
        ax = utils.mkvc(ax)

        plotx0 = (data_block[: rx0.nD]).reshape(nx, ny, order="F")
        ploty0 = (data_block[rx0.nD :]).reshape(nx, ny, order="F")

        plotx1 = (data_block[: rx0.nD] - data_back[: rx0.nD]).reshape(nx, ny, order="F")
        ploty1 = (data_block[rx0.nD :] - data_back[rx0.nD :]).reshape(nx, ny, order="F")

        # Plotting
        ax[0] = plotDataFun(ax[0], plotx0, num=ncontours, title="(a) Total E$_x$")
        ax[1] = plotDataFun(ax[1], plotx1, num=ncontours, title="(c) Secondary E$_x$")
        ax[2] = plotDataFun(ax[2], ploty0, num=ncontours, title="(b) Total E$_y$")
        ax[3] = plotDataFun(ax[3], ploty1, num=ncontours, title="(d) Secondary E$_y$")
        plt.tight_layout()

        if saveFig is True:
            fig.savefig("casingDpred", dpi=300)

    def plotSensitivities(self, J, saveFig=False):
        def plotJ(
            ax,
            Jv,
            title,
            plotGrid=False,
            xlabel="x (m)",
            ylabel="y (m)",
            xlim=None,
            ylim=None,
            clim=None,
            climCenter=True,
            plotBlock=False,
            num=30,
            norm=None,
            cblabel="",
        ):
            ax.axis("equal")
            vlim = np.absolute(Jv).max() * np.r_[-1.0, 1.0]

            if norm is None:
                f = ax.contourf(
                    self.rx_x,
                    self.rx_y,
                    Jv,
                    levels=np.linspace(vlim[0], vlim[1], num),
                    cmap=plt.get_cmap("viridis"),
                    vmin=vlim[0],
                    vmax=vlim[1],
                )
                cb = plt.colorbar(f, ax=ax, label=cblabel)
                cb.formatter.set_powerlimits((0, 0))
                ticks = [
                    "{0:1.1e}".format(a)
                    for a in np.linspace(0.95 * vlim[0], 0.95 * vlim[1], 5)
                ]
                ticks = [float(t) for t in ticks]
                cb.set_ticks(ticks)
                cb.update_ticks()

            elif norm.lower() == "lognorm":
                from matplotlib.colors import LogNorm

                f = ax.contourf(
                    self.rx_x,
                    self.rx_y,
                    np.absolute(Jv),
                    num,
                    cmap=plt.get_cmap("viridis"),
                    norm=LogNorm(),
                )
                cb = plt.colorbar(f, ax=ax)

            ax.set_title(title)
            ax.set_xlabel(xlabel)
            ax.set_ylabel(ylabel)

            if plotGrid:
                self.meshs.plot_slice(
                    np.nan * np.ones(self.meshs.nC), normal="Z", grid=True, ax=ax
                )

            if xlim is not None:
                ax.set_xlim(xlim)

            if ylim is not None:
                ax.set_ylim(ylim)

            if plotBlock is True:
                ax.plot(
                    np.r_[
                        self.block_x[0],
                        self.block_x[0],
                        self.block_x[1],
                        self.block_x[1],
                        self.block_x[0],
                    ],
                    np.r_[
                        self.block_y[0],
                        self.block_y[1],
                        self.block_y[1],
                        self.block_y[0],
                        self.block_y[0],
                    ],
                    color="w",
                    linestyle="-",
                )

            return ax

        # Plot Conductivity contribution
        plotGrid = False
        plotBlock = True
        ncontours = 30

        xlim = np.r_[-1500, 1500]
        ylim = np.r_[-1500, 1500]

        nx, ny = self.rx_x.shape
        nrx = len(self.rxlocs)

        J_back_ex = J[0, :nrx].reshape(nx, ny, order="F")
        J_back_ey = J[0, nrx:].reshape(nx, ny, order="F")
        J_layer_ex = J[1, :nrx].reshape(nx, ny, order="F")
        J_layer_ey = J[1, nrx:].reshape(nx, ny, order="F")
        J_block_ex = J[2, :nrx].reshape(nx, ny, order="F")
        J_block_ey = J[2, nrx:].reshape(nx, ny, order="F")

        clabelSigs = r"Sensitivity (V/m / log($\sigma$))"

        fig, ax = plt.subplots(3, 2, figsize=(12, 15))
        ax[0][0] = plotJ(
            ax[0][0],
            J_back_ex,
            r"(a) Sensitivity of $E_x$ wrt log($\sigma_{back}$)",
            plotGrid=plotGrid,
            xlim=xlim,
            ylim=ylim,
            plotBlock=plotBlock,
            num=ncontours,
            cblabel=clabelSigs,
        )

        ax[0][1] = plotJ(
            ax[0][1],
            J_back_ey,
            r"(b) Sensitivity of $E_y$ wrt log($\sigma_{back}$)",
            plotGrid=plotGrid,
            xlim=xlim,
            ylim=ylim,
            plotBlock=plotBlock,
            num=ncontours,
            cblabel=clabelSigs,
        )

        ax[1][0] = plotJ(
            ax[1][0],
            J_layer_ex,
            r"(c) Sensitivity of $E_x$ wrt log($\sigma_{layer}$)",
            plotGrid=plotGrid,
            xlim=xlim,
            ylim=ylim,
            plotBlock=plotBlock,
            num=ncontours,
            cblabel=clabelSigs,
        )

        ax[1][1] = plotJ(
            ax[1][1],
            J_layer_ey,
            r"(d) Sensitivity of $E_y$ wrt log($\sigma_{layer}$)",
            plotGrid=plotGrid,
            xlim=xlim,
            ylim=ylim,
            plotBlock=plotBlock,
            num=ncontours,
            cblabel=clabelSigs,
        )

        climsigblock = np.r_[-6e-8, 6e-8]
        ax[2][0] = plotJ(
            ax[2][0],
            J_block_ex,
            r"(e) Sensitivity of $E_x$ wrt log($\sigma_{block}$)",
            plotGrid=plotGrid,
            xlim=xlim,
            ylim=ylim,
            clim=climsigblock,
            plotBlock=plotBlock,
            num=ncontours,
            cblabel=clabelSigs,
        )

        ax[2][1] = plotJ(
            ax[2][1],
            J_block_ey,
            r"(f) Sensitivity of $E_y$ wrt log($\sigma_{block}$)",
            plotGrid=plotGrid,
            xlim=xlim,
            ylim=ylim,
            clim=climsigblock,
            plotBlock=plotBlock,
            num=ncontours,
            cblabel=clabelSigs,
        )

        plt.tight_layout()

        if saveFig is True:
            fig.savefig("J_sigmas", dpi=300)

        # Plot layer contribution
        fig, ax = plt.subplots(2, 2, figsize=(12, 10))
        # ax = utils.mkvc(ax)

        xlim = np.r_[-1500.0, 1500.0]
        ylim = np.r_[-1500.0, 1500.0]

        J_z0_ex, J_z0_ey = (
            J[3, :nrx].reshape(nx, ny, order="F"),
            J[3, nrx:].reshape(nx, ny, order="F"),
        )
        J_hz_ex, J_hz_ey = (
            J[4, :nrx].reshape(nx, ny, order="F"),
            J[4, nrx:].reshape(nx, ny, order="F"),
        )

        ax[0][0] = plotJ(
            ax[0][0],
            J_z0_ex,
            "(g) Sensitivity of $E_x$ wrt layer $z_0$",
            plotGrid=plotGrid,
            xlim=xlim,
            ylim=ylim,
            plotBlock=plotBlock,
            num=ncontours,
            cblabel="Sensitivity (V/m / m)",
        )

        ax[0][1] = plotJ(
            ax[0][1],
            J_z0_ey,
            "(h) Sensitivity of $E_y$ wrt layer $z_0$",
            plotGrid=plotGrid,
            xlim=xlim,
            ylim=ylim,
            plotBlock=plotBlock,
            num=ncontours,
            cblabel="Sensitivity (V/m / m)",
        )

        ax[1][0] = plotJ(
            ax[1][0],
            J_hz_ex,
            "(i) Sensitivity of $E_x$ wrt layer $h$",
            plotGrid=plotGrid,
            xlim=xlim,
            ylim=ylim,
            plotBlock=plotBlock,
            num=ncontours,
            cblabel="Sensitivity (V/m / m)",
        )

        ax[1][1] = plotJ(
            ax[1][1],
            J_hz_ey,
            "(j) Sensitivity of $E_y$ wrt layer $h$",
            plotGrid=plotGrid,
            xlim=xlim,
            ylim=ylim,
            plotBlock=plotBlock,
            num=ncontours,
            cblabel="Sensitivity (V/m / m)",
        )

        plt.tight_layout()

        if saveFig is True:
            fig.savefig("J_layer", dpi=300)

        # Block Geometry
        fig, ax = plt.subplots(4, 2, figsize=(12, 20))

        xlim = np.r_[-1500.0, 1500.0]
        ylim = np.r_[-1500.0, 1500.0]

        J_x0_ex = J[5, :nrx].reshape(nx, ny, order="F")
        J_x0_ey = J[5, nrx:].reshape(nx, ny, order="F")
        J_y0_ex = J[6, :nrx].reshape(nx, ny, order="F")
        J_y0_ey = J[6, nrx:].reshape(nx, ny, order="F")
        J_dx_ex = J[7, :nrx].reshape(nx, ny, order="F")
        J_dx_ey = J[7, nrx:].reshape(nx, ny, order="F")
        J_dy_ex = J[8, :nrx].reshape(nx, ny, order="F")
        J_dy_ey = J[8, nrx:].reshape(nx, ny, order="F")

        ax[0][0] = plotJ(
            ax[0][0],
            J_x0_ex,
            "(k) Sensitivity of $E_x$ wrt block $x_0$",
            plotGrid=plotGrid,
            xlim=xlim,
            ylim=ylim,
            plotBlock=plotBlock,
            num=ncontours,
            cblabel="Sensitivity (V/m / m)",
        )

        ax[0][1] = plotJ(
            ax[0][1],
            J_x0_ey,
            "(l) Sensitivity of $E_y$ wrt block $x_0$",
            plotGrid=plotGrid,
            xlim=xlim,
            ylim=ylim,
            plotBlock=plotBlock,
            num=ncontours,
            cblabel="Sensitivity (V/m / m)",
        )

        ax[1][0] = plotJ(
            ax[1][0],
            J_y0_ex,
            "(m) Sensitivity of $E_x$ wrt block $y_0$",
            plotGrid=plotGrid,
            xlim=xlim,
            ylim=ylim,
            plotBlock=plotBlock,
            num=ncontours,
            cblabel="Sensitivity (V/m / m)",
        )

        ax[1][1] = plotJ(
            ax[1][1],
            J_y0_ey,
            "(n) Sensitivity of $E_y$ wrt block $y_0$",
            plotGrid=plotGrid,
            xlim=xlim,
            ylim=ylim,
            plotBlock=plotBlock,
            num=ncontours,
            cblabel="Sensitivity (V/m / m)",
        )

        ax[2][0] = plotJ(
            ax[2][0],
            J_dx_ex,
            "(o) Sensitivity of $E_x$ wrt block $d_x$",
            plotGrid=plotGrid,
            xlim=xlim,
            ylim=ylim,
            plotBlock=plotBlock,
            num=ncontours,
            cblabel="Sensitivity (V/m / m)",
        )

        ax[2][1] = plotJ(
            ax[2][1],
            J_dx_ey,
            "(p) Sensitivity of $E_y$ wrt block $d_x$",
            plotGrid=plotGrid,
            xlim=xlim,
            ylim=ylim,
            plotBlock=plotBlock,
            num=ncontours,
            cblabel="Sensitivity (V/m / m)",
        )

        ax[3][0] = plotJ(
            ax[3][0],
            J_dy_ex,
            "(q) Sensitivity of $E_x$ wrt block $d_y$",
            plotGrid=plotGrid,
            xlim=xlim,
            ylim=ylim,
            plotBlock=plotBlock,
            num=ncontours,
            cblabel="Sensitivity (V/m / m)",
        )

        ax[3][1] = plotJ(
            ax[3][1],
            J_dy_ey,
            "(r) Sensitivity of $E_y$ wrt block $d_y$",
            plotGrid=plotGrid,
            xlim=xlim,
            ylim=ylim,
            plotBlock=plotBlock,
            num=ncontours,
            cblabel="Sensitivity (V/m / m)",
        )

        plt.tight_layout()

        if saveFig is True:
            fig.savefig("J_block", dpi=300)

    # ---------------------------------------------------------------------- #
    # ---------------- Run the example ------------------------------------- #
    # ---------------------------------------------------------------------- #

    def run(
        self, plotIt=False, runTests=False, verbose=True, saveFields=True, saveFig=False
    ):
        self.verbose = verbose

        if plotIt is True:  # Plot the Primary Model
            # self.plotPrimaryMesh() # plot the mesh
            self.plotPrimaryProperties()  # plot mu, sigma

        # Primary Simulation
        self.primaryProblem.survey = self.primarySurvey
        primfields = self.solvePrimary(self.primaryProblem, m=self.mtrue)

        if saveFields is True:
            np.save("primaryfields_" + self.NAME, primfields[:, :])
            print("   saved %s" % "primaryfields_" + self.NAME)

        mback = self.mtrue.copy()
        mback[2] = np.log(self.sigmalayer)

        # Secondary Problem and Survey
        sec_problem = self.setupSecondaryProblem(mapping=self.mapping)

        sec_survey = self.setupSecondarySurvey(
            self.primaryProblem, self.primarySurvey, self.primaryMap2meshs
        )
        sec_problem.survey = sec_survey

        # layered earth only (background)
        background_problem = self.setupSecondaryProblem(mapping=self.primaryMap2meshs)
        background_survey = self.setupSecondarySurvey(
            self.primaryProblem, self.primarySurvey, self.primaryMap2meshs
        )
        background_problem.survey = background_survey

        # -------------- Test the sensitivity ----------------------------- #
        if runTests:
            # Test Block Model
            def fun(x):
                return [sec_problem.dpred(x), lambda x: sec_problem.Jvec(self.mtrue, x)]

            tests.check_derivative(fun, self.mtrue, num=2, plotIt=False)

        # -------------- Calculate Fields --------------------------------- #
        # Background
        t0 = time.time()
        print("solving background ... ")
        fieldsback, dpredback = self.solveSecondary(
            background_problem, background_survey, self.mtrue
        )
        t1 = time.time()
        print("... done.   dpred_back {}".format(t1 - t0))

        if saveFields:
            np.save("dpred_" + self.NAME + "_back", dpredback)
            np.save("fields_" + self.NAME + "_back", fieldsback[:, :])

            print("   saved {}".format(self.NAME + "_back"))

        # with Block
        t0 = time.time()
        print("solving with block ... ")
        fields, dpred = self.solveSecondary(sec_problem, sec_survey, self.mtrue)
        print("... done.   dpred {}".format(t1 - t0))
        if saveFields:
            np.save("dpred_" + self.NAME, dpred)
            np.save("fields_" + self.NAME, fields[:, :])
            print("   saved {}".format(self.NAME))

        t1 = time.time()

        # -------------- Calculate J --------------------------------- #
        # Calculate J with block
        print("starting J with block")
        t0 = time.time()

        J = []
        for i in range(len(self.mtrue)):
            ei = np.zeros_like(self.mtrue)
            ei[i] = 1.0
            J.append(sec_problem.Jvec(self.mtrue, ei, f=fields))

        J = np.vstack(J)

        t1 = time.time()
        print("   J {}".format(t1 - t0))

        if saveFields is True:
            np.save("J_" + self.NAME, J)
            print("   saved {}".format("J_" + self.NAME))

        return {
            "primfields": primfields,  # primary fields
            "fieldsback": fieldsback,  # fields without block
            "dpredback": dpredback,  # predicted data without block
            "fields": fields,  # fields with block
            "dpred": dpred,  # predicted data with block
            "J": J,  # sensitivity
        }


class PrimSecCasingStoredResults(PrimSecCasingExample):
    url = "https://storage.googleapis.com/simpeg/papers/Heagyetal2016/"

    # cloudfiles = [
    #     'primaryfields_PrimSec_5e6Casing_50Mu_05Hz_LargeCondBody.npy',
    #     'dpred_PrimSec_5e6Casing_50Mu_05Hz_LargeCondBody_back.npy',
    #     'dpred_PrimSec_5e6Casing_50Mu_05Hz_LargeCondBody.npy',
    #     'J_PrimSec_5e6Casing_50Mu_05Hz_LargeCondBody.npy',
    #              ]

    cloudfile = "Heagyetal2016Casing.hdf5"

    entry_names = [
        "primaryfields_h_PrimSec_5e6Casing_50Mu_05Hz_LargeCondBody",
        "dpred_PrimSec_5e6Casing_50Mu_05Hz_LargeCondBody_back",
        "dpred_PrimSec_5e6Casing_50Mu_05Hz_LargeCondBody",
        "J_PrimSec_5e6Casing_50Mu_05Hz_LargeCondBody",
    ]

    def removeStoredResults(self):
        import shutil

        print("Removing {}".format(self.filepath))
        shutil.rmtree(self.filepath)

    def run(self, plotIt=False, runTests=False, saveFig=False):
        filepath = download(
            self.url + self.cloudfile, folder="~/Downloads/simpegtemp", overwrite=True
        )
        self.filepath = os.path.sep.join(filepath.split(os.path.sep)[:-1])

        # resultsFiles = ['{filepath}{slash}{file}'.format(
        #     filepath=self.filepath, slash=os.path.sep, file=file)
        #     for file in self.cloudfiles]
        # results = [np.load(file, encoding='bytes') for file in resultsFiles]

        h5f = h5py.File(filepath, "r")
        results = [h5f[entry_name][:] for entry_name in self.entry_names]
        results = dict(zip(["primfields", "dpredback", "dpred", "J"], results))

        # Put the primary fields into a fields object
        self.primaryProblem.model = self.mtrue  # set the current model
        self.primaryProblem.survey = self.primarySurvey
        primaryFields = self.primaryProblem.fieldsPair(self.primaryProblem)
        primaryFields[self.primarySurvey.source_list[0], "hSolution"] = results[
            "primfields"
        ]

        results["primfields"] = primaryFields

        return results


def run(plotIt=True, runTests=False, reRun=False, saveFig=False):
    """
    EM Heagyetal2016 CasingFwd3DPrimSecSrc
    ======================================

    Computation of Sensitivities for the primary-secondary example shown in
    Heagy et al 2016.

    :param bool plotIt: plot results
    :param bool runTests: run sensitivity tests? (slow...)
    :param bool reRun: recompute results? or just download stored results
        and plot
    :param bool saveFig: save the figures?
    """
    # recompute results?
    if reRun is True:
        casingExample = PrimSecCasingExample()

    # or download stored results
    elif reRun is False:
        casingExample = PrimSecCasingStoredResults()

    dataDict = casingExample.run(runTests=runTests)

    # plot some things
    if plotIt is True or saveFig is True:
        casingExample.plotPrimaryFields(dataDict["primfields"], saveFig=saveFig)
        casingExample.plotSecondarySource(dataDict["primfields"], saveFig=saveFig)
        casingExample.plotData(
            dataDict["dpred"], dataDict["dpredback"], saveFig=saveFig
        )
        casingExample.plotSensitivities(dataDict["J"], saveFig=saveFig)

    if plotIt is True:
        plt.show()

    # remove the downloaded results
    if reRun is False:
        try:
            casingExample.removeStoredResults()
        except PermissionError:
            pass


if __name__ == "__main__":
    run(plotIt=True, runTests=False, reRun=False, saveFig=False)

Total running time of the script: (0 minutes 31.885 seconds)

Estimated memory usage: 1619 MB

Gallery generated by Sphinx-Gallery