Note
Go to the end to download the full example code.
Maps: ComboMaps#
Invert synthetic magnetic data with variable background values and a single block anomaly buried at depth. We will use the Sum Map to invert for both the background values and an heterogeneous susceptibiilty model.
1
/home/vsts/work/1/s/simpeg/utils/model_builder.py:37: BreakingChangeWarning:
Since SimPEG v0.25.0, the 'get_indices_block' function returns a single array with the cell indices, instead of a tuple with a single element. This means that we don't need to unpack the tuple anymore to access to the cell indices.
If you were using this function as in:
    ind = get_indices_block(p0, p1, mesh.cell_centers)[0]
Make sure you update it to:
    ind = get_indices_block(p0, p1, mesh.cell_centers)
To hide this warning, add this to your script or notebook:
    import warnings
    from simpeg.utils import BreakingChangeWarning
    warnings.filterwarnings(action='ignore', category=BreakingChangeWarning)
Running inversion with SimPEG v0.25.0
================================================= Projected GNCG =================================================
  #     beta     phi_d     phi_m       f      |proj(x-g)-x|  LS   iter_CG   CG |Ax-b|/|b|  CG |Ax-b|   Comment
-----------------------------------------------------------------------------------------------------------------
   0  5.55e+05  9.11e+06  4.27e-04  9.12e+06                         0           inf          inf
   1  5.55e+05  1.32e+05  7.68e-02  1.75e+05    6.29e+01      0      3        7.87e-04     1.08e+06
   2  2.77e+05  4.45e+04  2.38e-01  1.11e+05    3.53e+01      0      9        6.09e-04     2.69e+04
   3  1.39e+05  1.89e+04  3.67e-01  6.99e+04    4.92e+01      0      10       5.36e-03     7.79e+03
   4  6.93e+04  6.05e+03  4.79e-01  3.93e+04    5.52e+01      0      9        4.61e-04     4.79e+03
   5  3.47e+04  4.44e+03  5.13e-01  2.22e+04    4.73e+01      1      10       9.71e-03     4.92e+03
   6  1.73e+04  8.93e+02  6.02e-01  1.13e+04    3.57e+01      0      9        8.03e-04     8.57e+03
   7  8.67e+03  8.84e+02  6.03e-01  6.11e+03    4.85e+01      4      10       4.03e-01     5.96e+04
   8  4.33e+03  4.26e+02  6.46e-01  3.23e+03    5.29e+01      0      10       3.10e-02     3.51e+04
   9  2.17e+03  4.26e+02  6.46e-01  1.83e+03    3.33e+01      7      10       2.05e-01     5.82e+04
  10  1.08e+03  3.80e+02  6.63e-01  1.10e+03    3.51e+01      0      10       5.65e-02     1.88e+04
Reached starting chifact with l2-norm regularization: Start IRLS steps...
irls_threshold 0.010213981630628545
irls_threshold 0.012617945824939927
  11  1.08e+03  3.87e+02  9.07e-01  1.37e+03    3.56e+01      1      10       9.47e-02     5.23e+04
  12  1.08e+03  3.87e+02  9.73e-01  1.44e+03    6.16e+01     12      10       6.62e-02     7.52e+04
  13  1.08e+03  3.94e+02  1.01e+00  1.49e+03    6.16e+01      4      10       3.11e-02     3.53e+04
  14  1.08e+03  3.97e+02  1.03e+00  1.52e+03    4.64e+01      1      10       8.90e-01     6.18e+04
  15  1.08e+03  3.92e+02  1.02e+00  1.50e+03    3.59e+01      0      10       3.96e-02     4.87e+04
  16  1.08e+03  3.92e+02  1.04e+00  1.52e+03    5.47e+01      7      10       1.05e-01     1.94e+04
  17  1.08e+03  3.99e+02  1.01e+00  1.49e+03    5.64e+01      2      10       6.07e-01     1.60e+05
  18  1.08e+03  4.23e+02  9.50e-01  1.45e+03    3.50e+01      0      10       1.24e-02     9.78e+03
  19  1.08e+03  4.17e+02  9.22e-01  1.42e+03    3.68e+01      2      10       4.33e-02     8.47e+04
  20  1.08e+03  4.38e+02  8.54e-01  1.36e+03    6.02e+01      1      10       7.62e-02     7.64e+04
  21  1.08e+03  4.33e+02  8.02e-01  1.30e+03    6.11e+01      2      10       3.28e-02     5.30e+04
  22  1.08e+03  4.37e+02  7.18e-01  1.22e+03    3.38e+01      0      10       1.76e-02     1.10e+04
  23  1.08e+03  4.47e+02  6.77e-01  1.18e+03    3.56e+01      1      10       4.15e-02     2.39e+04
  24  8.91e+02  4.30e+02  6.11e-01  9.74e+02    6.14e+01      0      10       7.90e-03     1.11e+04
  25  8.91e+02  4.34e+02  5.42e-01  9.17e+02    5.63e+01      2      10       4.73e-01     1.34e+05
  26  8.91e+02  4.32e+02  4.64e-01  8.46e+02    3.55e+01      0      10       1.58e-02     1.15e+04
  27  8.91e+02  4.40e+02  3.95e-01  7.92e+02    3.96e+01      1      10       4.13e-01     9.62e+03
  28  8.91e+02  4.35e+02  3.29e-01  7.28e+02    6.17e+01      0      10       1.50e-02     1.69e+04
  29  8.91e+02  4.40e+02  2.70e-01  6.81e+02    3.27e+01      1      10       6.33e-02     7.28e+03
  30  7.38e+02  4.29e+02  2.36e-01  6.03e+02    3.63e+01      0      10       8.77e-03     7.82e+03
Reach maximum number of IRLS cycles: 20
------------------------- STOP! -------------------------
1 : |fc-fOld| = 1.3523e+01 <= tolF*(1+|f0|) = 9.1152e+05
1 : |xc-x_last| = 4.3328e-03 <= tolX*(1+|x0|) = 1.0075e-01
0 : |proj(x-g)-x|    = 3.6254e+01 <= tolG          = 1.0000e-03
0 : |proj(x-g)-x|    = 3.6254e+01 <= 1e3*eps       = 1.0000e-03
0 : maxIter   =     100    <= iter          =     30
------------------------- DONE! -------------------------
from discretize import TensorMesh
from discretize.utils import active_from_xyz
from simpeg import (
    utils,
    maps,
    regularization,
    data_misfit,
    optimization,
    inverse_problem,
    directives,
    inversion,
)
from simpeg.potential_fields import magnetics
import numpy as np
import matplotlib.pyplot as plt
def run(plotIt=True):
    h0_amplitude, h0_inclination, h0_declination = (50000.0, 90.0, 0.0)
    # Create a mesh
    dx = 5.0
    hxind = [(dx, 5, -1.3), (dx, 10), (dx, 5, 1.3)]
    hyind = [(dx, 5, -1.3), (dx, 10), (dx, 5, 1.3)]
    hzind = [(dx, 5, -1.3), (dx, 10)]
    mesh = TensorMesh([hxind, hyind, hzind], "CCC")
    # Lets create a simple Gaussian topo and set the active cells
    [xx, yy] = np.meshgrid(mesh.nodes_x, mesh.nodes_y)
    zz = -np.exp((xx**2 + yy**2) / 75**2) + mesh.nodes_z[-1]
    # We would usually load a topofile
    topo = np.c_[utils.mkvc(xx), utils.mkvc(yy), utils.mkvc(zz)]
    # Go from topo to array of indices of active cells
    actv = active_from_xyz(mesh, topo, "N")
    nC = int(actv.sum())
    # Create and array of observation points
    xr = np.linspace(-20.0, 20.0, 20)
    yr = np.linspace(-20.0, 20.0, 20)
    X, Y = np.meshgrid(xr, yr)
    # Move the observation points 5m above the topo
    Z = -np.exp((X**2 + Y**2) / 75**2) + mesh.nodes_z[-1] + 5.0
    # Create a MAGsurvey
    rxLoc = np.c_[utils.mkvc(X.T), utils.mkvc(Y.T), utils.mkvc(Z.T)]
    rxLoc = magnetics.Point(rxLoc)
    srcField = magnetics.UniformBackgroundField(
        receiver_list=[rxLoc],
        amplitude=h0_amplitude,
        inclination=h0_inclination,
        declination=h0_declination,
    )
    survey = magnetics.Survey(srcField)
    # We can now create a susceptibility model and generate data
    model = np.zeros(mesh.nC)
    # Change values in half the domain
    model[mesh.gridCC[:, 0] < 0] = 0.01
    # Add a block in half-space
    model = utils.model_builder.add_block(
        mesh.gridCC, model, np.r_[-10, -10, 20], np.r_[10, 10, 40], 0.05
    )
    model = utils.mkvc(model)
    model = model[actv]
    # Create active map to go from reduce set to full
    actvMap = maps.InjectActiveCells(mesh, actv, np.nan)
    # Create reduced identity map
    idenMap = maps.IdentityMap(nP=nC)
    # Create the forward model operator
    prob = magnetics.Simulation3DIntegral(
        mesh,
        survey=survey,
        chiMap=idenMap,
        active_cells=actv,
        store_sensitivities="forward_only",
    )
    # Compute linear forward operator and compute some data
    data = prob.make_synthetic_data(
        model, relative_error=0.0, noise_floor=1, add_noise=True
    )
    # Create a homogenous maps for the two domains
    domains = [mesh.gridCC[actv, 0] < 0, mesh.gridCC[actv, 0] >= 0]
    homogMap = maps.SurjectUnits(domains)
    # Create a wire map for a second model space, voxel based
    wires = maps.Wires(("homo", len(domains)), ("hetero", nC))
    # Create Sum map
    sumMap = maps.SumMap([homogMap * wires.homo, wires.hetero])
    # Create the forward model operator
    prob = magnetics.Simulation3DIntegral(
        mesh, survey=survey, chiMap=sumMap, active_cells=actv, store_sensitivities="ram"
    )
    # Make sensitivity weighting
    # Take the cell number out of the scaling.
    # Want to keep high sens for large volumes
    wr = (
        prob.getJtJdiag(np.ones(sumMap.shape[1]))
        / np.r_[homogMap.P.T * mesh.cell_volumes[actv], mesh.cell_volumes[actv]] ** 2.0
    )
    # Scale the model spaces independently
    wr[wires.homo.index] /= np.max((wires.homo * wr)) * utils.mkvc(
        homogMap.P.sum(axis=0).flatten()
    )
    wr[wires.hetero.index] /= np.max(wires.hetero * wr)
    wr = wr**0.5
    ## Create a regularization
    # For the homogeneous model
    regMesh = TensorMesh([len(domains)])
    reg_m1 = regularization.Sparse(regMesh, mapping=wires.homo)
    reg_m1.set_weights(weights=wires.homo * wr)
    reg_m1.norms = [0, 2]
    reg_m1.reference_model = np.zeros(sumMap.shape[1])
    # Regularization for the voxel model
    reg_m2 = regularization.Sparse(
        mesh, active_cells=actv, mapping=wires.hetero, gradient_type="components"
    )
    reg_m2.set_weights(weights=wires.hetero * wr)
    reg_m2.norms = [0, 0, 0, 0]
    reg_m2.reference_model = np.zeros(sumMap.shape[1])
    reg = reg_m1 + reg_m2
    # Data misfit function
    dmis = data_misfit.L2DataMisfit(simulation=prob, data=data)
    # Add directives to the inversion
    opt = optimization.ProjectedGNCG(
        maxIter=100,
        lower=0.0,
        upper=1.0,
        maxIterLS=20,
        cg_maxiter=10,
        cg_rtol=1e-3,
        tolG=1e-3,
        eps=1e-6,
    )
    invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e-2)
    # Here is where the norms are applied
    # Use pick a threshold parameter empirically based on the distribution of
    #  model parameters
    IRLS = directives.UpdateIRLS(f_min_change=1e-3)
    update_Jacobi = directives.UpdatePreconditioner()
    inv = inversion.BaseInversion(invProb, directiveList=[IRLS, betaest, update_Jacobi])
    # Run the inversion
    m0 = np.ones(sumMap.shape[1]) * 1e-4  # Starting model
    prob.model = m0
    mrecSum = inv.run(m0)
    if plotIt:
        mesh.plot_3d_slicer(
            actvMap * model,
            aspect="equal",
            zslice=30,
            pcolor_opts={"cmap": "inferno_r"},
            transparent="slider",
        )
        mesh.plot_3d_slicer(
            actvMap * sumMap * mrecSum,
            aspect="equal",
            zslice=30,
            pcolor_opts={"cmap": "inferno_r"},
            transparent="slider",
        )
if __name__ == "__main__":
    run()
    plt.show()
Total running time of the script: (0 minutes 23.307 seconds)
Estimated memory usage: 342 MB
 
    
