Maps: ComboMaps#

Invert synthetic magnetic data with variable background values and a single block anomaly buried at depth. We will use the Sum Map to invert for both the background values and an heterogeneous susceptibiilty model.

1
  • plot sumMap
  • plot sumMap
/home/vsts/work/1/s/simpeg/utils/model_builder.py:37: BreakingChangeWarning:

Since SimPEG v0.25.0, the 'get_indices_block' function returns a single array with the cell indices, instead of a tuple with a single element. This means that we don't need to unpack the tuple anymore to access to the cell indices.
If you were using this function as in:

    ind = get_indices_block(p0, p1, mesh.cell_centers)[0]

Make sure you update it to:

    ind = get_indices_block(p0, p1, mesh.cell_centers)

To hide this warning, add this to your script or notebook:

    import warnings
    from simpeg.utils import BreakingChangeWarning

    warnings.filterwarnings(action='ignore', category=BreakingChangeWarning)



Running inversion with SimPEG v0.25.1.dev6+gb840df108
================================================= Projected GNCG =================================================
  #     beta     phi_d     phi_m       f      |proj(x-g)-x|  LS   iter_CG   CG |Ax-b|/|b|  CG |Ax-b|   Comment
-----------------------------------------------------------------------------------------------------------------
   0  5.32e+05  9.10e+06  4.27e-04  9.10e+06                         0           inf          inf
   1  5.32e+05  1.29e+05  7.89e-02  1.71e+05    6.29e+01      0      3        7.66e-04     1.05e+06
   2  2.66e+05  4.21e+04  2.44e-01  1.07e+05    3.53e+01      0      9        5.79e-04     2.59e+04
   3  1.33e+05  1.79e+04  3.71e-01  6.73e+04    4.92e+01      0      10       1.26e-02     1.77e+04
   4  6.66e+04  5.67e+03  4.80e-01  3.76e+04    5.56e+01      0      9        4.52e-04     4.89e+03
   5  3.33e+04  4.27e+03  5.12e-01  2.13e+04    4.73e+01      1      10       1.15e-02     5.59e+03
   6  1.66e+04  8.45e+02  5.99e-01  1.08e+04    3.56e+01      0      10       4.85e-04     5.48e+03
   7  8.32e+03  8.38e+02  6.00e-01  5.83e+03    4.84e+01      4      10       1.22e+00     1.74e+05
   8  4.16e+03  4.12e+02  6.42e-01  3.08e+03    5.35e+01      0      10       3.20e-02     3.78e+04
   9  2.08e+03  4.12e+02  6.42e-01  1.75e+03    3.33e+01      7      10       2.39e-01     6.67e+04
  10  1.04e+03  3.61e+02  6.61e-01  1.05e+03    3.51e+01      0      10       7.19e-02     2.46e+04
Reached starting chifact with l2-norm regularization: Start IRLS steps...
irls_threshold 0.010219925373431072
irls_threshold 0.012367468447233831
  11  1.04e+03  3.66e+02  9.08e-01  1.31e+03    5.26e+01      2      10       4.22e-01     5.69e+04
  12  1.04e+03  3.70e+02  9.67e-01  1.37e+03    6.12e+01      3      10       1.71e-01     1.42e+05
  13  1.04e+03  3.70e+02  1.01e+00  1.42e+03    3.64e+01     12      10       1.01e-01     9.47e+04
  14  1.04e+03  3.71e+02  1.04e+00  1.45e+03    3.64e+01      4      10       1.04e-01     9.81e+04
  15  1.04e+03  3.79e+02  1.01e+00  1.43e+03    5.43e+01      0      10       4.88e-01     1.72e+05
  16  1.04e+03  3.79e+02  1.00e+00  1.42e+03    5.93e+01      4      10       2.87e-01     1.59e+05
  17  1.04e+03  3.80e+02  9.77e-01  1.40e+03    2.98e+01      4      10       1.77e-01     2.94e+04
  18  1.04e+03  4.01e+02  9.15e-01  1.35e+03    3.34e+01      0      10       3.02e-01     1.48e+05
  19  1.04e+03  4.02e+02  8.76e-01  1.31e+03    6.23e+01      7      10       2.08e-02     4.35e+04
  20  1.04e+03  4.07e+02  8.00e-01  1.24e+03    6.23e+01      2      10       4.24e-02     8.90e+04
  21  1.04e+03  3.99e+02  7.26e-01  1.15e+03    3.48e+01      0      10       1.75e-01     1.44e+05
  22  1.04e+03  4.09e+02  6.73e-01  1.11e+03    3.39e+01      2      10       1.01e-01     2.15e+04
  23  1.04e+03  4.12e+02  5.94e-01  1.03e+03    6.15e+01      0      10       8.57e-03     9.98e+03
  24  1.04e+03  4.16e+02  5.45e-01  9.83e+02    3.29e+01      3      10       3.87e-02     9.47e+03
  25  1.04e+03  4.29e+02  4.66e-01  9.13e+02    3.52e+01      0      10       1.69e-02     1.16e+04
  26  1.04e+03  4.31e+02  3.89e-01  8.35e+02    6.18e+01      0      10       7.33e-03     9.52e+03
  27  1.04e+03  4.29e+02  3.32e-01  7.74e+02    6.16e+01      1      10       6.76e-03     8.29e+03
  28  1.04e+03  4.22e+02  2.83e-01  7.16e+02    3.53e+01      0      10       1.50e-02     1.16e+04
  29  1.04e+03  4.34e+02  2.36e-01  6.80e+02    4.81e+01      0      10       2.61e-01     9.25e+03
  30  1.04e+03  4.28e+02  2.04e-01  6.40e+02    6.19e+01      0      10       4.87e-03     6.07e+03
Reach maximum number of IRLS cycles: 20
------------------------- STOP! -------------------------
1 : |fc-fOld| = 1.5172e+01 <= tolF*(1+|f0|) = 9.1019e+05
1 : |xc-x_last| = 4.1430e-03 <= tolX*(1+|x0|) = 1.0075e-01
0 : |proj(x-g)-x|    = 6.1934e+01 <= tolG          = 1.0000e-03
0 : |proj(x-g)-x|    = 6.1934e+01 <= 1e3*eps       = 1.0000e-03
0 : maxIter   =     100    <= iter          =     30
------------------------- DONE! -------------------------

from discretize import TensorMesh
from discretize.utils import active_from_xyz
from simpeg import (
    utils,
    maps,
    regularization,
    data_misfit,
    optimization,
    inverse_problem,
    directives,
    inversion,
)
from simpeg.potential_fields import magnetics
import numpy as np
import matplotlib.pyplot as plt


def run(plotIt=True):
    h0_amplitude, h0_inclination, h0_declination = (50000.0, 90.0, 0.0)

    # Create a mesh
    dx = 5.0

    hxind = [(dx, 5, -1.3), (dx, 10), (dx, 5, 1.3)]
    hyind = [(dx, 5, -1.3), (dx, 10), (dx, 5, 1.3)]
    hzind = [(dx, 5, -1.3), (dx, 10)]

    mesh = TensorMesh([hxind, hyind, hzind], "CCC")

    # Lets create a simple Gaussian topo and set the active cells
    [xx, yy] = np.meshgrid(mesh.nodes_x, mesh.nodes_y)
    zz = -np.exp((xx**2 + yy**2) / 75**2) + mesh.nodes_z[-1]

    # We would usually load a topofile
    topo = np.c_[utils.mkvc(xx), utils.mkvc(yy), utils.mkvc(zz)]

    # Go from topo to array of indices of active cells
    actv = active_from_xyz(mesh, topo, "N")
    nC = int(actv.sum())
    # Create and array of observation points
    xr = np.linspace(-20.0, 20.0, 20)
    yr = np.linspace(-20.0, 20.0, 20)
    X, Y = np.meshgrid(xr, yr)

    # Move the observation points 5m above the topo
    Z = -np.exp((X**2 + Y**2) / 75**2) + mesh.nodes_z[-1] + 5.0

    # Create a MAGsurvey
    rxLoc = np.c_[utils.mkvc(X.T), utils.mkvc(Y.T), utils.mkvc(Z.T)]
    rxLoc = magnetics.Point(rxLoc)
    srcField = magnetics.UniformBackgroundField(
        receiver_list=[rxLoc],
        amplitude=h0_amplitude,
        inclination=h0_inclination,
        declination=h0_declination,
    )
    survey = magnetics.Survey(srcField)

    # We can now create a susceptibility model and generate data
    model = np.zeros(mesh.nC)

    # Change values in half the domain
    model[mesh.gridCC[:, 0] < 0] = 0.01

    # Add a block in half-space
    model = utils.model_builder.add_block(
        mesh.gridCC, model, np.r_[-10, -10, 20], np.r_[10, 10, 40], 0.05
    )

    model = utils.mkvc(model)
    model = model[actv]

    # Create active map to go from reduce set to full
    actvMap = maps.InjectActiveCells(mesh, actv, np.nan)

    # Create reduced identity map
    idenMap = maps.IdentityMap(nP=nC)

    # Create the forward model operator
    prob = magnetics.Simulation3DIntegral(
        mesh,
        survey=survey,
        chiMap=idenMap,
        active_cells=actv,
        store_sensitivities="forward_only",
    )

    # Compute linear forward operator and compute some data
    data = prob.make_synthetic_data(
        model, relative_error=0.0, noise_floor=1, add_noise=True
    )

    # Create a homogenous maps for the two domains
    domains = [mesh.gridCC[actv, 0] < 0, mesh.gridCC[actv, 0] >= 0]
    homogMap = maps.SurjectUnits(domains)

    # Create a wire map for a second model space, voxel based
    wires = maps.Wires(("homo", len(domains)), ("hetero", nC))

    # Create Sum map
    sumMap = maps.SumMap([homogMap * wires.homo, wires.hetero])

    # Create the forward model operator
    prob = magnetics.Simulation3DIntegral(
        mesh, survey=survey, chiMap=sumMap, active_cells=actv, store_sensitivities="ram"
    )

    # Make sensitivity weighting
    # Take the cell number out of the scaling.
    # Want to keep high sens for large volumes
    wr = (
        prob.getJtJdiag(np.ones(sumMap.shape[1]))
        / np.r_[homogMap.P.T * mesh.cell_volumes[actv], mesh.cell_volumes[actv]] ** 2.0
    )
    # Scale the model spaces independently
    wr[wires.homo.index] /= np.max((wires.homo * wr)) * utils.mkvc(
        homogMap.P.sum(axis=0).flatten()
    )
    wr[wires.hetero.index] /= np.max(wires.hetero * wr)
    wr = wr**0.5

    ## Create a regularization
    # For the homogeneous model
    regMesh = TensorMesh([len(domains)])

    reg_m1 = regularization.Sparse(regMesh, mapping=wires.homo)
    reg_m1.set_weights(weights=wires.homo * wr)

    reg_m1.norms = [0, 2]
    reg_m1.reference_model = np.zeros(sumMap.shape[1])

    # Regularization for the voxel model
    reg_m2 = regularization.Sparse(
        mesh, active_cells=actv, mapping=wires.hetero, gradient_type="components"
    )
    reg_m2.set_weights(weights=wires.hetero * wr)

    reg_m2.norms = [0, 0, 0, 0]
    reg_m2.reference_model = np.zeros(sumMap.shape[1])

    reg = reg_m1 + reg_m2

    # Data misfit function
    dmis = data_misfit.L2DataMisfit(simulation=prob, data=data)

    # Add directives to the inversion
    opt = optimization.ProjectedGNCG(
        maxIter=100,
        lower=0.0,
        upper=1.0,
        maxIterLS=20,
        cg_maxiter=10,
        cg_rtol=1e-3,
        tolG=1e-3,
        eps=1e-6,
    )
    invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)
    betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e-2)

    # Here is where the norms are applied
    # Use pick a threshold parameter empirically based on the distribution of
    #  model parameters
    IRLS = directives.UpdateIRLS(f_min_change=1e-3)

    update_Jacobi = directives.UpdatePreconditioner()
    inv = inversion.BaseInversion(invProb, directiveList=[IRLS, betaest, update_Jacobi])

    # Run the inversion
    m0 = np.ones(sumMap.shape[1]) * 1e-4  # Starting model
    prob.model = m0
    mrecSum = inv.run(m0)
    if plotIt:
        mesh.plot_3d_slicer(
            actvMap * model,
            aspect="equal",
            zslice=30,
            pcolor_opts={"cmap": "inferno_r"},
            transparent="slider",
        )

        mesh.plot_3d_slicer(
            actvMap * sumMap * mrecSum,
            aspect="equal",
            zslice=30,
            pcolor_opts={"cmap": "inferno_r"},
            transparent="slider",
        )


if __name__ == "__main__":
    run()
    plt.show()

Total running time of the script: (0 minutes 25.829 seconds)

Estimated memory usage: 339 MB

Gallery generated by Sphinx-Gallery