Note
Go to the end to download the full example code.
Magnetic inversion on a TreeMesh#
In this example, we demonstrate the use of a Magnetic Vector Inversion on 3D TreeMesh for the inversion of magnetic data.
The inverse problem uses the simpeg.regularization.VectorAmplitude
regularization.
from simpeg import (
    data,
    data_misfit,
    directives,
    maps,
    inverse_problem,
    optimization,
    inversion,
    regularization,
)
from simpeg import utils
from simpeg.utils import mkvc, sdiag
from discretize.utils import mesh_builder_xyz, refine_tree_xyz, active_from_xyz
from simpeg.potential_fields import magnetics
import numpy as np
import matplotlib.pyplot as plt
# sphinx_gallery_thumbnail_number = 3
Setup#
Define the survey and model parameters
First we need to define the direction of the inducing field As a simple case, we pick a vertical inducing field of magnitude 50,000 nT.
np.random.seed(1)
# We will assume a vertical inducing field
h0_amplitude, h0_inclination, h0_declination = (50000.0, 90.0, 0.0)
# Create grid of points for topography
# Lets create a simple Gaussian topo and set the active cells
[xx, yy] = np.meshgrid(np.linspace(-200, 200, 50), np.linspace(-200, 200, 50))
b = 100
A = 50
zz = A * np.exp(-0.5 * ((xx / b) ** 2.0 + (yy / b) ** 2.0))
topo = np.c_[utils.mkvc(xx), utils.mkvc(yy), utils.mkvc(zz)]
# Create an array of observation points
xr = np.linspace(-100.0, 100.0, 20)
yr = np.linspace(-100.0, 100.0, 20)
X, Y = np.meshgrid(xr, yr)
Z = A * np.exp(-0.5 * ((X / b) ** 2.0 + (Y / b) ** 2.0)) + 5
# Create a MAGsurvey
xyzLoc = np.c_[mkvc(X.T), mkvc(Y.T), mkvc(Z.T)]
rxLoc = magnetics.receivers.Point(xyzLoc)
srcField = magnetics.sources.UniformBackgroundField(
    receiver_list=[rxLoc],
    amplitude=h0_amplitude,
    inclination=h0_inclination,
    declination=h0_declination,
)
survey = magnetics.survey.Survey(srcField)
Inversion Mesh#
Here, we create a TreeMesh with base cell size of 5 m.
# Create a mesh
h = [5, 5, 5]
padDist = np.ones((3, 2)) * 100
mesh = mesh_builder_xyz(
    xyzLoc, h, padding_distance=padDist, depth_core=100, mesh_type="tree"
)
mesh = refine_tree_xyz(
    mesh, topo, method="surface", octree_levels=[2, 6], finalize=True
)
# Define an active cells from topo
actv = active_from_xyz(mesh, topo)
nC = int(actv.sum())
/usr/share/miniconda/envs/simpeg-test/lib/python3.11/site-packages/discretize/utils/mesh_utils.py:528: FutureWarning:
In discretize v1.0 the TreeMesh will change the default value of diagonal_balance to True, which will likely slightly change meshes you have previously created. If you need to keep the current behavior, explicitly set diagonal_balance=False.
/home/vsts/work/1/s/examples/03-magnetics/plot_inv_mag_MVI_VectorAmplitude.py:88: DeprecationWarning:
The surface option is deprecated as of `0.9.0` please update your code to use the `TreeMesh.refine_surface` functionality. It will be removed in a future version of discretize.
Forward modeling data#
We can now create a magnetization model and generate data.
model_azm_dip = np.zeros((mesh.nC, 2))
model_amp = np.ones(mesh.nC) * 1e-8
ind = utils.model_builder.get_indices_block(
    np.r_[-30, -20, -10],
    np.r_[30, 20, 25],
    mesh.gridCC,
)
model_amp[ind] = 0.05
model_azm_dip[ind, 0] = 45.0
model_azm_dip[ind, 1] = 90.0
# Remove air cells
model_azm_dip = model_azm_dip[actv, :]
model_amp = model_amp[actv]
model = sdiag(model_amp) * utils.mat_utils.dip_azimuth2cartesian(
    model_azm_dip[:, 0], model_azm_dip[:, 1]
)
# Create reduced identity map
idenMap = maps.IdentityMap(nP=nC * 3)
# Create the simulation
simulation = magnetics.simulation.Simulation3DIntegral(
    survey=survey, mesh=mesh, chiMap=idenMap, active_cells=actv, model_type="vector"
)
# Compute some data and add some random noise
d = simulation.dpred(mkvc(model))
std = 10  # nT
synthetic_data = d + np.random.randn(len(d)) * std
wd = np.ones(len(d)) * std
# Assign data and uncertainties to the survey
data_object = data.Data(survey, dobs=synthetic_data, standard_deviation=wd)
# Create a projection matrix for plotting later
actv_plot = maps.InjectActiveCells(mesh, actv, np.nan)
/home/vsts/work/1/s/examples/03-magnetics/plot_inv_mag_MVI_VectorAmplitude.py:105: BreakingChangeWarning:
Since SimPEG v0.25.0, the 'get_indices_block' function returns a single array with the cell indices, instead of a tuple with a single element. This means that we don't need to unpack the tuple anymore to access to the cell indices.
If you were using this function as in:
    ind = get_indices_block(p0, p1, mesh.cell_centers)[0]
Make sure you update it to:
    ind = get_indices_block(p0, p1, mesh.cell_centers)
To hide this warning, add this to your script or notebook:
    import warnings
    from simpeg.utils import BreakingChangeWarning
    warnings.filterwarnings(action='ignore', category=BreakingChangeWarning)
Inversion#
We can now attempt the inverse calculations.
# Create sensitivity weights from our linear forward operator
rxLoc = survey.source_field.receiver_list[0].locations
# This Mapping connects the regularizations for the three-component
# vector model
wires = maps.Wires(("p", nC), ("s", nC), ("t", nC))
m0 = np.ones(3 * nC) * 1e-4  # Starting model
# Create the regularization on the amplitude of magnetization
reg = regularization.VectorAmplitude(
    mesh,
    mapping=idenMap,
    active_cells=actv,
    reference_model_in_smooth=True,
    norms=[0.0, 2.0, 2.0, 2.0],
    gradient_type="total",
)
# Data misfit function
dmis = data_misfit.L2DataMisfit(simulation=simulation, data=data_object)
dmis.W = 1.0 / data_object.standard_deviation
# The optimization scheme
opt = optimization.ProjectedGNCG(
    maxIter=20, lower=-10, upper=10.0, maxIterLS=20, cg_maxiter=20, cg_rtol=1e-3
)
# The inverse problem
invProb = inverse_problem.BaseInvProblem(dmis, reg, opt)
# Estimate the initial beta factor
betaest = directives.BetaEstimate_ByEig(beta0_ratio=1e1)
# Add sensitivity weights
sensitivity_weights = directives.UpdateSensitivityWeights()
# Here is where the norms are applied
IRLS = directives.UpdateIRLS(
    f_min_change=1e-3, max_irls_iterations=10, misfit_tolerance=5e-1
)
# Pre-conditioner
update_Jacobi = directives.UpdatePreconditioner()
inv = inversion.BaseInversion(
    invProb, directiveList=[sensitivity_weights, IRLS, update_Jacobi, betaest]
)
# Run the inversion
mrec = inv.run(m0)
Running inversion with SimPEG v0.25.0
================================================= Projected GNCG =================================================
  #     beta     phi_d     phi_m       f      |proj(x-g)-x|  LS   iter_CG   CG |Ax-b|/|b|  CG |Ax-b|   Comment
-----------------------------------------------------------------------------------------------------------------
   0  1.29e+05  1.19e+04  0.00e+00  1.19e+04                         0           inf          inf
   1  1.29e+05  6.90e+03  1.58e-02  8.94e+03    2.43e+03      0      20       2.11e-01     4.84e+04
   2  6.46e+04  4.67e+03  3.99e-02  7.24e+03    2.02e+03      0      12       9.99e-04     8.74e+01
   3  3.23e+04  2.71e+03  8.31e-02  5.39e+03    1.86e+03      0      14       6.56e-04     3.97e+01
   4  1.62e+04  1.33e+03  1.43e-01  3.64e+03    1.74e+03      0      16       5.45e-04     2.42e+01
   5  8.08e+03  5.93e+02  2.06e-01  2.26e+03    1.61e+03      0      18       8.56e-04     2.56e+01
   6  4.04e+03  2.56e+02  2.63e-01  1.32e+03    1.48e+03      0      20       1.69e-03     3.14e+01
Reached starting chifact with l2-norm regularization: Start IRLS steps...
irls_threshold 0.008936903709795632
   7  4.04e+03  4.72e+02  3.76e-01  1.99e+03    1.55e+03      0      18       5.87e-04     1.11e+01
   8  4.04e+03  7.19e+02  4.59e-01  2.57e+03    1.55e+03      0      14       5.41e-04     1.06e+01
   9  2.64e+03  6.44e+02  6.62e-01  2.39e+03    1.24e+03      0      14       5.10e-04     3.75e+00
  10  1.81e+03  6.12e+02  8.95e-01  2.23e+03    1.53e+03      0      12       9.72e-04     1.61e+01
  11  1.27e+03  5.68e+02  1.08e+00  1.95e+03    1.57e+03      0      11       9.37e-04     1.91e+01
  12  1.27e+03  6.47e+02  1.06e+00  2.00e+03    1.70e+03      0      9        9.36e-04     2.81e+01
  13  8.69e+02  5.28e+02  1.15e+00  1.53e+03    9.39e+02      0      11       9.09e-04     5.48e+00
  14  8.69e+02  5.36e+02  1.07e+00  1.47e+03    1.47e+03      0      10       4.64e-04     5.22e+00
  15  8.69e+02  5.34e+02  1.01e+00  1.41e+03    1.37e+03      0      10       3.39e-04     2.93e+00
  16  8.69e+02  5.31e+02  9.53e-01  1.36e+03    1.32e+03      0      9        9.94e-04     7.26e+00
Reach maximum number of IRLS cycles: 10
------------------------- STOP! -------------------------
1 : |fc-fOld| = 1.6725e+01 <= tolF*(1+|f0|) = 1.1929e+03
1 : |xc-x_last| = 2.9655e-02 <= tolX*(1+|x0|) = 1.0290e-01
0 : |proj(x-g)-x|    = 1.3247e+03 <= tolG          = 1.0000e-01
0 : |proj(x-g)-x|    = 1.3247e+03 <= 1e3*eps       = 1.0000e-02
0 : maxIter   =      20    <= iter          =     16
------------------------- DONE! -------------------------
Final Plot#
Let’s compare the smooth and compact model
plt.figure(figsize=(12, 6))
ax = plt.subplot(2, 2, 1)
im = utils.plot_utils.plot2Ddata(xyzLoc, synthetic_data, ax=ax)
plt.colorbar(im[0])
ax.set_title("Predicted data.")
plt.gca().set_aspect("equal", adjustable="box")
for ii, (title, mvec) in enumerate(
    [("True model", model), ("Smooth model", invProb.l2model), ("Sparse model", mrec)]
):
    ax = plt.subplot(2, 2, ii + 2)
    mesh.plot_slice(
        actv_plot * mvec.reshape((-1, 3), order="F"),
        v_type="CCv",
        view="vec",
        ax=ax,
        normal="Y",
        grid=True,
        quiver_opts={
            "pivot": "mid",
            "scale": 8 * np.abs(mvec).max(),
            "scale_units": "inches",
        },
    )
    ax.set_xlim([-200, 200])
    ax.set_ylim([-100, 75])
    ax.set_title(title)
    ax.set_xlabel("x")
    ax.set_ylabel("z")
    plt.gca().set_aspect("equal", adjustable="box")
plt.show()
print("END")
# Plot the final predicted data and the residual
# plt.figure()
# ax = plt.subplot(1, 2, 1)
# utils.plot_utils.plot2Ddata(xyzLoc, invProb.dpred, ax=ax)
# ax.set_title("Predicted data.")
# plt.gca().set_aspect("equal", adjustable="box")
#
# ax = plt.subplot(1, 2, 2)
# utils.plot_utils.plot2Ddata(xyzLoc, synthetic_data - invProb.dpred, ax=ax)
# ax.set_title("Data residual.")
# plt.gca().set_aspect("equal", adjustable="box")

END
Total running time of the script: (0 minutes 21.723 seconds)
Estimated memory usage: 447 MB
