Sparse Inversion with Iteratively Re-Weighted Least-Squares#

Least-squares inversion produces smooth models which may not be an accurate representation of the true model. Here we demonstrate the basics of inverting for sparse and/or blocky models. Here, we used the iteratively reweighted least-squares approach. For this tutorial, we focus on the following:

  • Defining the forward problem

  • Defining the inverse problem (data misfit, regularization, optimization)

  • Defining the paramters for the IRLS algorithm

  • Specifying directives for the inversion

  • Recovering a set of model parameters which explains the observations

import numpy as np
import matplotlib.pyplot as plt

from discretize import TensorMesh

from simpeg import (
    simulation,
    maps,
    data_misfit,
    directives,
    optimization,
    regularization,
    inverse_problem,
    inversion,
)

# sphinx_gallery_thumbnail_number = 3

Defining the Model and Mapping#

Here we generate a synthetic model and a mappig which goes from the model space to the row space of our linear operator.

nParam = 100  # Number of model paramters

# A 1D mesh is used to define the row-space of the linear operator.
mesh = TensorMesh([nParam])

# Creating the true model
true_model = np.zeros(mesh.nC)
true_model[mesh.cell_centers_x > 0.3] = 1.0
true_model[mesh.cell_centers_x > 0.45] = -0.5
true_model[mesh.cell_centers_x > 0.6] = 0

# Mapping from the model space to the row space of the linear operator
model_map = maps.IdentityMap(mesh)

# Plotting the true model
fig = plt.figure(figsize=(8, 5))
ax = fig.add_subplot(111)
ax.plot(mesh.cell_centers_x, true_model, "b-")
ax.set_ylim([-2, 2])
plot inv 2 inversion irls
(-2.0, 2.0)

Defining the Linear Operator#

Here we define the linear operator with dimensions (nData, nParam). In practive, you may have a problem-specific linear operator which you would like to construct or load here.

# Number of data observations (rows)
nData = 20

# Create the linear operator for the tutorial. The columns of the linear operator
# represents a set of decaying and oscillating functions.
jk = np.linspace(1.0, 60.0, nData)
p = -0.25
q = 0.25


def g(k):
    return np.exp(p * jk[k] * mesh.cell_centers_x) * np.cos(
        np.pi * q * jk[k] * mesh.cell_centers_x
    )


G = np.empty((nData, nParam))

for i in range(nData):
    G[i, :] = g(i)

# Plot the columns of G
fig = plt.figure(figsize=(8, 5))
ax = fig.add_subplot(111)
for i in range(G.shape[0]):
    ax.plot(G[i, :])

ax.set_title("Columns of matrix G")
Columns of matrix G
Text(0.5, 1.0, 'Columns of matrix G')

Defining the Simulation#

The simulation defines the relationship between the model parameters and predicted data.

sim = simulation.LinearSimulation(mesh, G=G, model_map=model_map)

Predict Synthetic Data#

Here, we use the true model to create synthetic data which we will subsequently invert.

# Standard deviation of Gaussian noise being added
std = 0.02
np.random.seed(1)

# Create a SimPEG data object
data_obj = sim.make_synthetic_data(true_model, noise_floor=std, add_noise=True)

Define the Inverse Problem#

The inverse problem is defined by 3 things:

  1. Data Misfit: a measure of how well our recovered model explains the field data

  2. Regularization: constraints placed on the recovered model and a priori information

  3. Optimization: the numerical approach used to solve the inverse problem

# Define the data misfit. Here the data misfit is the L2 norm of the weighted
# residual between the observed data and the data predicted for a given model.
# Within the data misfit, the residual between predicted and observed data are
# normalized by the data's standard deviation.
dmis = data_misfit.L2DataMisfit(simulation=sim, data=data_obj)

# Define the regularization (model objective function). Here, 'p' defines the
# the norm of the smallness term and 'q' defines the norm of the smoothness
# term.
reg = regularization.Sparse(mesh, mapping=model_map)
reg.reference_model = np.zeros(nParam)
p = 0.0
q = 0.0
reg.norms = [p, q]

# Define how the optimization problem is solved.
opt = optimization.ProjectedGNCG(
    maxIter=100, lower=-2.0, upper=2.0, maxIterLS=20, cg_maxiter=30, cg_rtol=1e-3
)

# Here we define the inverse problem that is to be solved
inv_prob = inverse_problem.BaseInvProblem(dmis, reg, opt)

Define Inversion Directives#

Here we define any directiveas that are carried out during the inversion. This includes the cooling schedule for the trade-off parameter (beta), stopping criteria for the inversion and saving inversion results at each iteration.

# Add sensitivity weights but don't update at each beta
sensitivity_weights = directives.UpdateSensitivityWeights(every_iteration=False)

# Reach target misfit for L2 solution, then use IRLS until model stops changing.
IRLS = directives.UpdateIRLS(max_irls_iterations=40, f_min_change=1e-4)

# Defining a starting value for the trade-off parameter (beta) between the data
# misfit and the regularization.
starting_beta = directives.BetaEstimate_ByEig(beta0_ratio=1e0)

# Update the preconditionner
update_Jacobi = directives.UpdatePreconditioner()

# Save output at each iteration
saveDict = directives.SaveOutputEveryIteration(save_txt=False)

# Define the directives as a list
directives_list = [
    sensitivity_weights,
    IRLS,
    starting_beta,
    update_Jacobi,
    saveDict,
]
/home/vsts/work/1/s/simpeg/directives/_directives.py:1865: FutureWarning:

SaveEveryIteration.save_txt has been deprecated, please use SaveEveryIteration.on_disk. It will be removed in version 0.26.0 of SimPEG.

/home/vsts/work/1/s/simpeg/directives/_directives.py:1866: FutureWarning:

SaveEveryIteration.save_txt has been deprecated, please use SaveEveryIteration.on_disk. It will be removed in version 0.26.0 of SimPEG.

Setting a Starting Model and Running the Inversion#

To define the inversion object, we need to define the inversion problem and the set of directives. We can then run the inversion.

# Here we combine the inverse problem and the set of directives
inv = inversion.BaseInversion(inv_prob, directives_list)

# Starting model
starting_model = 1e-4 * np.ones(nParam)

# Run inversion
recovered_model = inv.run(starting_model)
Running inversion with SimPEG v0.25.1.dev6+gb840df108
================================================= Projected GNCG =================================================
  #     beta     phi_d     phi_m       f      |proj(x-g)-x|  LS   iter_CG   CG |Ax-b|/|b|  CG |Ax-b|   Comment
-----------------------------------------------------------------------------------------------------------------
   0  1.68e+06  3.73e+03  1.02e-09  3.73e+03                         0           inf          inf
   1  1.68e+06  1.84e+03  3.99e-04  2.51e+03    1.95e+01      0      8        3.22e-04     1.55e+00
   2  8.41e+05  1.24e+03  9.15e-04  2.01e+03    1.91e+01      0      9        2.30e-04     1.89e-01
   3  4.20e+05  7.11e+02  1.81e-03  1.47e+03    1.86e+01      0      9        8.57e-04     5.16e-01
   4  2.10e+05  3.46e+02  3.02e-03  9.82e+02    1.76e+01      0      11       3.42e-04     1.43e-01
   5  1.05e+05  1.47e+02  4.33e-03  6.03e+02    1.51e+01      0      12       4.06e-04     1.08e-01
   6  5.25e+04  5.83e+01  5.49e-03  3.47e+02    1.36e+01      0      14       8.17e-04     1.29e-01
   7  2.63e+04  2.40e+01  6.38e-03  1.92e+02    1.22e+01      0      20       8.99e-04     7.97e-02
   8  1.31e+04  1.14e+01  7.03e-03  1.04e+02    1.00e+01      0      30       1.29e-03     6.16e-02
Reached starting chifact with l2-norm regularization: Start IRLS steps...
irls_threshold 1.238700651544523
   9  1.31e+04  1.84e+01  8.62e-03  1.32e+02    1.46e+01      0      29       9.65e-04     2.85e-02
  10  1.31e+04  2.40e+01  9.47e-03  1.48e+02    1.33e+01      0      22       8.61e-04     1.78e-02
  11  1.04e+04  2.46e+01  1.05e-02  1.33e+02    3.89e+00      0      25       7.69e-04     8.14e-03
  12  8.14e+03  2.43e+01  1.13e-02  1.16e+02    2.68e+00      0      26       8.51e-04     8.04e-03
  13  6.40e+03  2.34e+01  1.19e-02  9.93e+01    4.30e+00      0      25       8.21e-04     7.06e-03
  14  5.13e+03  2.20e+01  1.22e-02  8.46e+01    5.15e+00      0      24       9.08e-04     7.50e-03
  15  5.13e+03  2.29e+01  1.16e-02  8.26e+01    7.21e+00      0      25       3.73e-04     2.82e-03
  16  4.17e+03  2.08e+01  1.16e-02  6.90e+01    6.11e+00      0      22       5.56e-04     5.14e-03
  17  4.17e+03  2.03e+01  1.06e-02  6.45e+01    6.66e+00      0      23       5.46e-04     3.96e-03
  18  4.17e+03  1.99e+01  9.62e-03  6.00e+01    7.31e+00      0      23       7.66e-04     5.91e-03
  19  4.17e+03  1.91e+01  8.59e-03  5.49e+01    7.63e+00      0      23       3.19e-04     2.59e-03
  20  4.17e+03  1.79e+01  7.48e-03  4.90e+01    7.91e+00      0      23       6.85e-04     6.04e-03
  21  6.50e+03  1.99e+01  5.93e-03  5.85e+01    1.50e+01      0      18       9.06e-04     2.87e-02
  22  6.50e+03  1.92e+01  5.20e-03  5.30e+01    9.93e+00      0      22       5.25e-04     6.50e-03
  23  6.50e+03  1.82e+01  4.46e-03  4.73e+01    1.00e+01      0      21       7.51e-04     9.28e-03
  24  6.50e+03  1.75e+01  3.91e-03  4.29e+01    1.07e+01      0      23       5.08e-04     7.96e-03
  25  1.02e+04  1.93e+01  3.20e-03  5.21e+01    1.65e+01      0      18       4.40e-04     2.83e-02
  26  1.02e+04  1.88e+01  2.74e-03  4.68e+01    1.14e+01      0      20       8.43e-04     2.37e-02
  27  1.02e+04  1.84e+01  2.39e-03  4.28e+01    1.21e+01      0      19       8.00e-04     2.62e-02
  28  1.02e+04  1.79e+01  2.04e-03  3.87e+01    1.83e+01      0      16       9.54e-04     5.32e-02
  29  1.59e+04  1.89e+01  1.60e-03  4.44e+01    1.67e+01      0      15       8.43e-04     9.12e-02
  30  1.59e+04  1.88e+01  1.35e-03  4.03e+01    1.29e+01      0      17       5.05e-04     1.89e-02
  31  1.59e+04  1.84e+01  1.13e-03  3.64e+01    1.23e+01      0      20       5.92e-04     2.27e-02
  32  1.59e+04  1.80e+01  9.34e-04  3.29e+01    1.23e+01      0      22       6.71e-04     3.29e-02
  33  1.59e+04  1.77e+01  7.76e-04  3.01e+01    1.20e+01      0      23       3.80e-04     1.86e-02
  34  2.49e+04  1.87e+01  5.99e-04  3.36e+01    1.60e+01      0      19       6.36e-04     1.07e-01
  35  2.49e+04  1.88e+01  4.95e-04  3.12e+01    1.78e+01      0      21       3.61e-04     2.38e-02
  36  2.49e+04  1.90e+01  4.10e-04  2.92e+01    1.27e+01      0      19       3.12e-04     1.47e-02
  37  2.49e+04  1.92e+01  3.40e-04  2.76e+01    1.26e+01      0      22       5.86e-04     3.26e-02
  38  2.49e+04  1.93e+01  2.83e-04  2.63e+01    1.26e+01      0      24       9.18e-04     4.82e-02
  39  2.49e+04  1.94e+01  2.37e-04  2.53e+01    1.26e+01      0      25       3.87e-04     1.91e-02
  40  2.49e+04  1.95e+01  1.99e-04  2.44e+01    1.25e+01      0      27       5.01e-04     2.52e-02
  41  2.49e+04  1.95e+01  1.67e-04  2.37e+01    1.26e+01      0      29       4.67e-04     2.40e-02
  42  2.49e+04  1.95e+01  1.41e-04  2.30e+01    1.27e+01      0      30       5.00e-04     2.61e-02
  43  2.49e+04  1.95e+01  1.19e-04  2.25e+01    1.27e+01      0      30       3.10e-03     1.65e-01
  44  2.49e+04  1.95e+01  1.02e-04  2.20e+01    1.28e+01      0      30       1.60e-02     8.60e-01
  45  2.49e+04  1.95e+01  8.40e-05  2.16e+01    1.53e+01      0      30       1.18e-03     6.75e-02
  46  2.49e+04  1.95e+01  7.08e-05  2.12e+01    1.30e+01      0      30       7.88e-03     4.29e-01
  47  2.49e+04  1.94e+01  6.03e-05  2.09e+01    1.30e+01      0      29       5.45e-04     2.97e-02
  48  2.49e+04  1.93e+01  5.26e-05  2.06e+01    1.30e+01      0      25       6.78e-04     3.68e-02
Reach maximum number of IRLS cycles: 40
------------------------- STOP! -------------------------
1 : |fc-fOld| = 5.8892e-02 <= tolF*(1+|f0|) = 3.7301e+02
0 : |xc-x_last| = 2.3394e-01 <= tolX*(1+|x0|) = 1.0010e-01
0 : |proj(x-g)-x|    = 1.3013e+01 <= tolG          = 1.0000e-01
0 : |proj(x-g)-x|    = 1.3013e+01 <= 1e3*eps       = 1.0000e-02
0 : maxIter   =     100    <= iter          =     48
------------------------- DONE! -------------------------

Plotting Results#

fig, ax = plt.subplots(1, 2, figsize=(12 * 1.2, 4 * 1.2))

# True versus recovered model
ax[0].plot(mesh.cell_centers_x, true_model, "k-")
ax[0].plot(mesh.cell_centers_x, inv_prob.l2model, "b-")
ax[0].plot(mesh.cell_centers_x, recovered_model, "r-")
ax[0].legend(("True Model", "Recovered L2 Model", "Recovered Sparse Model"))
ax[0].set_ylim([-2, 2])

# Observed versus predicted data
ax[1].plot(data_obj.dobs, "k-")
ax[1].plot(inv_prob.dpred, "ko")
ax[1].legend(("Observed Data", "Predicted Data"))

# Plot convergence
fig = plt.figure(figsize=(9, 5))
ax = fig.add_axes([0.2, 0.1, 0.7, 0.85])
ax.plot(saveDict.phi_d, "k", lw=2)

twin = ax.twinx()
twin.plot(saveDict.phi_m, "k--", lw=2)
ax.plot(
    np.r_[IRLS.metrics.start_irls_iter, IRLS.metrics.start_irls_iter],
    np.r_[0, np.max(saveDict.phi_d)],
    "k:",
)
ax.text(
    IRLS.metrics.start_irls_iter,
    0.0,
    "IRLS Start",
    va="bottom",
    ha="center",
    rotation="vertical",
    size=12,
    bbox={"facecolor": "white"},
)

ax.set_ylabel(r"$\phi_d$", size=16, rotation=0)
ax.set_xlabel("Iterations", size=14)
twin.set_ylabel(r"$\phi_m$", size=16, rotation=0)
  • plot inv 2 inversion irls
  • plot inv 2 inversion irls
Text(865.1527777777777, 0.5, '$\\phi_m$')

Total running time of the script: (0 minutes 29.921 seconds)

Estimated memory usage: 320 MB

Gallery generated by Sphinx-Gallery