Sparse Inversion with Iteratively Re-Weighted Least-Squares#

Least-squares inversion produces smooth models which may not be an accurate representation of the true model. Here we demonstrate the basics of inverting for sparse and/or blocky models. Here, we used the iteratively reweighted least-squares approach. For this tutorial, we focus on the following:

  • Defining the forward problem

  • Defining the inverse problem (data misfit, regularization, optimization)

  • Defining the paramters for the IRLS algorithm

  • Specifying directives for the inversion

  • Recovering a set of model parameters which explains the observations

import numpy as np
import matplotlib.pyplot as plt

from discretize import TensorMesh

from simpeg import (
    simulation,
    maps,
    data_misfit,
    directives,
    optimization,
    regularization,
    inverse_problem,
    inversion,
)

# sphinx_gallery_thumbnail_number = 3

Defining the Model and Mapping#

Here we generate a synthetic model and a mappig which goes from the model space to the row space of our linear operator.

nParam = 100  # Number of model paramters

# A 1D mesh is used to define the row-space of the linear operator.
mesh = TensorMesh([nParam])

# Creating the true model
true_model = np.zeros(mesh.nC)
true_model[mesh.cell_centers_x > 0.3] = 1.0
true_model[mesh.cell_centers_x > 0.45] = -0.5
true_model[mesh.cell_centers_x > 0.6] = 0

# Mapping from the model space to the row space of the linear operator
model_map = maps.IdentityMap(mesh)

# Plotting the true model
fig = plt.figure(figsize=(8, 5))
ax = fig.add_subplot(111)
ax.plot(mesh.cell_centers_x, true_model, "b-")
ax.set_ylim([-2, 2])
plot inv 2 inversion irls
(-2.0, 2.0)

Defining the Linear Operator#

Here we define the linear operator with dimensions (nData, nParam). In practive, you may have a problem-specific linear operator which you would like to construct or load here.

# Number of data observations (rows)
nData = 20

# Create the linear operator for the tutorial. The columns of the linear operator
# represents a set of decaying and oscillating functions.
jk = np.linspace(1.0, 60.0, nData)
p = -0.25
q = 0.25


def g(k):
    return np.exp(p * jk[k] * mesh.cell_centers_x) * np.cos(
        np.pi * q * jk[k] * mesh.cell_centers_x
    )


G = np.empty((nData, nParam))

for i in range(nData):
    G[i, :] = g(i)

# Plot the columns of G
fig = plt.figure(figsize=(8, 5))
ax = fig.add_subplot(111)
for i in range(G.shape[0]):
    ax.plot(G[i, :])

ax.set_title("Columns of matrix G")
Columns of matrix G
Text(0.5, 1.0, 'Columns of matrix G')

Defining the Simulation#

The simulation defines the relationship between the model parameters and predicted data.

sim = simulation.LinearSimulation(mesh, G=G, model_map=model_map)

Predict Synthetic Data#

Here, we use the true model to create synthetic data which we will subsequently invert.

# Standard deviation of Gaussian noise being added
std = 0.02
np.random.seed(1)

# Create a SimPEG data object
data_obj = sim.make_synthetic_data(true_model, noise_floor=std, add_noise=True)

Define the Inverse Problem#

The inverse problem is defined by 3 things:

  1. Data Misfit: a measure of how well our recovered model explains the field data

  2. Regularization: constraints placed on the recovered model and a priori information

  3. Optimization: the numerical approach used to solve the inverse problem

# Define the data misfit. Here the data misfit is the L2 norm of the weighted
# residual between the observed data and the data predicted for a given model.
# Within the data misfit, the residual between predicted and observed data are
# normalized by the data's standard deviation.
dmis = data_misfit.L2DataMisfit(simulation=sim, data=data_obj)

# Define the regularization (model objective function). Here, 'p' defines the
# the norm of the smallness term and 'q' defines the norm of the smoothness
# term.
reg = regularization.Sparse(mesh, mapping=model_map)
reg.reference_model = np.zeros(nParam)
p = 0.0
q = 0.0
reg.norms = [p, q]

# Define how the optimization problem is solved.
opt = optimization.ProjectedGNCG(
    maxIter=100, lower=-2.0, upper=2.0, maxIterLS=20, cg_maxiter=30, cg_rtol=1e-3
)

# Here we define the inverse problem that is to be solved
inv_prob = inverse_problem.BaseInvProblem(dmis, reg, opt)

Define Inversion Directives#

Here we define any directiveas that are carried out during the inversion. This includes the cooling schedule for the trade-off parameter (beta), stopping criteria for the inversion and saving inversion results at each iteration.

# Add sensitivity weights but don't update at each beta
sensitivity_weights = directives.UpdateSensitivityWeights(every_iteration=False)

# Reach target misfit for L2 solution, then use IRLS until model stops changing.
IRLS = directives.UpdateIRLS(max_irls_iterations=40, f_min_change=1e-4)

# Defining a starting value for the trade-off parameter (beta) between the data
# misfit and the regularization.
starting_beta = directives.BetaEstimate_ByEig(beta0_ratio=1e0)

# Update the preconditionner
update_Jacobi = directives.UpdatePreconditioner()

# Save output at each iteration
saveDict = directives.SaveOutputEveryIteration(save_txt=False)

# Define the directives as a list
directives_list = [
    sensitivity_weights,
    IRLS,
    starting_beta,
    update_Jacobi,
    saveDict,
]
/home/vsts/work/1/s/simpeg/directives/_directives.py:1865: FutureWarning:

SaveEveryIteration.save_txt has been deprecated, please use SaveEveryIteration.on_disk. It will be removed in version 0.26.0 of SimPEG.

/home/vsts/work/1/s/simpeg/directives/_directives.py:1866: FutureWarning:

SaveEveryIteration.save_txt has been deprecated, please use SaveEveryIteration.on_disk. It will be removed in version 0.26.0 of SimPEG.

Setting a Starting Model and Running the Inversion#

To define the inversion object, we need to define the inversion problem and the set of directives. We can then run the inversion.

# Here we combine the inverse problem and the set of directives
inv = inversion.BaseInversion(inv_prob, directives_list)

# Starting model
starting_model = 1e-4 * np.ones(nParam)

# Run inversion
recovered_model = inv.run(starting_model)
Running inversion with SimPEG v0.25.1.dev9+g471344c9a
================================================= Projected GNCG =================================================
  #     beta     phi_d     phi_m       f      |proj(x-g)-x|  LS   iter_CG   CG |Ax-b|/|b|  CG |Ax-b|   Comment
-----------------------------------------------------------------------------------------------------------------
   0  1.69e+06  3.76e+03  1.01e-09  3.76e+03                         0           inf          inf
   1  1.69e+06  1.89e+03  3.93e-04  2.56e+03    1.93e+01      0      8        3.38e-04     1.59e+00
   2  8.43e+05  1.30e+03  9.04e-04  2.06e+03    1.90e+01      0      9        2.36e-04     1.93e-01
   3  4.21e+05  7.64e+02  1.80e-03  1.52e+03    1.86e+01      0      10       4.21e-04     2.51e-01
   4  2.11e+05  3.85e+02  3.07e-03  1.03e+03    1.76e+01      0      11       7.86e-04     3.26e-01
   5  1.05e+05  1.70e+02  4.49e-03  6.42e+02    1.54e+01      0      13       9.24e-04     2.47e-01
   6  5.27e+04  7.02e+01  5.78e-03  3.75e+02    1.38e+01      0      17       6.80e-04     1.09e-01
   7  2.63e+04  3.09e+01  6.80e-03  2.10e+02    1.30e+01      0      22       8.02e-04     7.28e-02
   8  1.32e+04  1.64e+01  7.55e-03  1.16e+02    1.16e+01      0      30       1.67e-03     8.26e-02
Reached starting chifact with l2-norm regularization: Start IRLS steps...
irls_threshold 1.2509082772081042
   9  1.32e+04  2.42e+01  9.31e-03  1.47e+02    1.59e+01      0      24       9.83e-04     3.16e-02
  10  1.04e+04  2.52e+01  1.06e-02  1.35e+02    5.05e+00      0      30       1.05e-03     1.05e-02
  11  8.01e+03  2.49e+01  1.18e-02  1.19e+02    2.56e+00      0      30       1.05e-03     9.38e-03
  12  6.23e+03  2.40e+01  1.28e-02  1.03e+02    3.72e+00      0      30       7.64e-04     6.07e-03
  13  4.93e+03  2.26e+01  1.35e-02  8.93e+01    4.83e+00      0      28       9.40e-04     6.86e-03
  14  4.03e+03  2.11e+01  1.39e-02  7.72e+01    5.21e+00      0      24       6.82e-04     4.74e-03
  15  4.03e+03  2.14e+01  1.33e-02  7.50e+01    6.95e+00      0      28       6.96e-04     5.26e-03
  16  4.03e+03  2.14e+01  1.24e-02  7.13e+01    7.32e+00      0      26       6.27e-04     4.92e-03
  17  4.03e+03  2.11e+01  1.12e-02  6.64e+01    7.68e+00      0      25       7.06e-04     5.80e-03
  18  4.03e+03  2.07e+01  1.02e-02  6.15e+01    8.32e+00      0      22       6.80e-04     6.06e-03
  19  4.03e+03  2.01e+01  9.02e-03  5.64e+01    8.52e+00      0      21       9.49e-04     8.64e-03
  20  4.03e+03  1.93e+01  7.94e-03  5.12e+01    8.93e+00      0      21       5.65e-04     5.53e-03
  21  4.03e+03  1.83e+01  6.91e-03  4.61e+01    9.80e+00      0      23       5.62e-04     6.45e-03
  22  4.03e+03  1.71e+01  5.75e-03  4.03e+01    9.25e+00      0      24       6.98e-04     8.07e-03
  23  6.38e+03  1.81e+01  4.37e-03  4.60e+01    1.49e+01      0      19       6.89e-04     2.35e-02
  24  6.38e+03  1.77e+01  3.54e-03  4.03e+01    8.30e+00      0      24       3.07e-04     4.02e-03
  25  9.99e+03  1.88e+01  2.75e-03  4.63e+01    1.51e+01      0      19       9.72e-04     3.78e-02
  26  9.99e+03  1.87e+01  2.30e-03  4.16e+01    9.62e+00      0      23       3.71e-04     6.53e-03
  27  9.99e+03  1.85e+01  1.95e-03  3.80e+01    1.05e+01      0      23       2.78e-04     5.56e-03
  28  9.99e+03  1.84e+01  1.67e-03  3.51e+01    1.07e+01      0      22       4.08e-04     7.96e-03
  29  9.99e+03  1.83e+01  1.45e-03  3.28e+01    1.07e+01      0      22       8.50e-04     1.46e-02
  30  9.99e+03  1.83e+01  1.26e-03  3.09e+01    1.07e+01      0      22       8.10e-04     1.56e-02
  31  9.99e+03  1.83e+01  1.09e-03  2.92e+01    1.42e+01      0      20       7.34e-04     1.68e-02
  32  9.99e+03  1.83e+01  9.22e-04  2.75e+01    1.03e+01      0      22       6.48e-04     1.23e-02
  33  9.99e+03  1.83e+01  7.80e-04  2.61e+01    1.03e+01      0      26       9.06e-04     1.83e-02
  34  9.99e+03  1.82e+01  6.62e-04  2.48e+01    1.04e+01      0      30       5.01e-04     1.08e-02
  35  9.99e+03  1.83e+01  5.66e-04  2.39e+01    1.09e+01      2      28       8.29e-04     1.93e-02
  36  9.99e+03  1.84e+01  4.72e-04  2.31e+01    1.55e+01      0      28       5.77e-04     2.45e-02
  37  9.99e+03  1.84e+01  4.02e-04  2.24e+01    1.12e+01      0      27       7.55e-04     2.05e-02
  38  9.99e+03  1.84e+01  3.41e-04  2.18e+01    1.09e+01      0      30       3.05e-04     8.42e-03
  39  9.99e+03  1.84e+01  2.86e-04  2.12e+01    1.13e+01      0      29       5.94e-04     2.32e-02
  40  9.99e+03  1.84e+01  2.42e-04  2.08e+01    1.09e+01      0      30       4.72e-04     1.34e-02
  41  9.99e+03  1.84e+01  2.03e-04  2.05e+01    1.35e+01      0      27       4.72e-04     1.47e-02
  42  9.99e+03  1.85e+01  1.73e-04  2.02e+01    1.12e+01      0      28       2.71e-04     8.38e-03
  43  9.99e+03  1.84e+01  1.50e-04  1.99e+01    1.08e+01      0      29       3.99e-04     1.26e-02
  44  9.99e+03  1.82e+01  1.35e-04  1.96e+01    1.08e+01      0      30       6.65e-02     2.15e+00
  45  9.99e+03  1.76e+01  1.36e-04  1.90e+01    1.08e+01      0      30       5.14e-02     1.71e+00
  46  1.57e+04  1.72e+01  8.49e-05  1.86e+01    1.58e+01      1      30       2.59e-02     3.81e+00
  47  2.47e+04  1.73e+01  6.41e-05  1.89e+01    1.70e+01      2      30       7.23e-03     2.13e+00
  48  3.90e+04  1.74e+01  5.29e-05  1.95e+01    1.94e+01      2      30       4.30e-04     2.43e-01
Reach maximum number of IRLS cycles: 40
------------------------- STOP! -------------------------
1 : |fc-fOld| = 1.0727e-01 <= tolF*(1+|f0|) = 3.7582e+02
1 : |xc-x_last| = 6.2526e-02 <= tolX*(1+|x0|) = 1.0010e-01
0 : |proj(x-g)-x|    = 1.9414e+01 <= tolG          = 1.0000e-01
0 : |proj(x-g)-x|    = 1.9414e+01 <= 1e3*eps       = 1.0000e-02
0 : maxIter   =     100    <= iter          =     48
------------------------- DONE! -------------------------

Plotting Results#

fig, ax = plt.subplots(1, 2, figsize=(12 * 1.2, 4 * 1.2))

# True versus recovered model
ax[0].plot(mesh.cell_centers_x, true_model, "k-")
ax[0].plot(mesh.cell_centers_x, inv_prob.l2model, "b-")
ax[0].plot(mesh.cell_centers_x, recovered_model, "r-")
ax[0].legend(("True Model", "Recovered L2 Model", "Recovered Sparse Model"))
ax[0].set_ylim([-2, 2])

# Observed versus predicted data
ax[1].plot(data_obj.dobs, "k-")
ax[1].plot(inv_prob.dpred, "ko")
ax[1].legend(("Observed Data", "Predicted Data"))

# Plot convergence
fig = plt.figure(figsize=(9, 5))
ax = fig.add_axes([0.2, 0.1, 0.7, 0.85])
ax.plot(saveDict.phi_d, "k", lw=2)

twin = ax.twinx()
twin.plot(saveDict.phi_m, "k--", lw=2)
ax.plot(
    np.r_[IRLS.metrics.start_irls_iter, IRLS.metrics.start_irls_iter],
    np.r_[0, np.max(saveDict.phi_d)],
    "k:",
)
ax.text(
    IRLS.metrics.start_irls_iter,
    0.0,
    "IRLS Start",
    va="bottom",
    ha="center",
    rotation="vertical",
    size=12,
    bbox={"facecolor": "white"},
)

ax.set_ylabel(r"$\phi_d$", size=16, rotation=0)
ax.set_xlabel("Iterations", size=14)
twin.set_ylabel(r"$\phi_m$", size=16, rotation=0)
  • plot inv 2 inversion irls
  • plot inv 2 inversion irls
Text(865.1527777777777, 0.5, '$\\phi_m$')

Total running time of the script: (0 minutes 26.007 seconds)

Estimated memory usage: 321 MB

Gallery generated by Sphinx-Gallery