Note
Go to the end to download the full example code.
Sparse Inversion with Iteratively Re-Weighted Least-Squares#
Least-squares inversion produces smooth models which may not be an accurate representation of the true model. Here we demonstrate the basics of inverting for sparse and/or blocky models. Here, we used the iteratively reweighted least-squares approach. For this tutorial, we focus on the following:
Defining the forward problem
Defining the inverse problem (data misfit, regularization, optimization)
Defining the paramters for the IRLS algorithm
Specifying directives for the inversion
Recovering a set of model parameters which explains the observations
import numpy as np
import matplotlib.pyplot as plt
from discretize import TensorMesh
from simpeg import (
    simulation,
    maps,
    data_misfit,
    directives,
    optimization,
    regularization,
    inverse_problem,
    inversion,
)
# sphinx_gallery_thumbnail_number = 3
Defining the Model and Mapping#
Here we generate a synthetic model and a mappig which goes from the model space to the row space of our linear operator.
nParam = 100  # Number of model paramters
# A 1D mesh is used to define the row-space of the linear operator.
mesh = TensorMesh([nParam])
# Creating the true model
true_model = np.zeros(mesh.nC)
true_model[mesh.cell_centers_x > 0.3] = 1.0
true_model[mesh.cell_centers_x > 0.45] = -0.5
true_model[mesh.cell_centers_x > 0.6] = 0
# Mapping from the model space to the row space of the linear operator
model_map = maps.IdentityMap(mesh)
# Plotting the true model
fig = plt.figure(figsize=(8, 5))
ax = fig.add_subplot(111)
ax.plot(mesh.cell_centers_x, true_model, "b-")
ax.set_ylim([-2, 2])

(-2.0, 2.0)
Defining the Linear Operator#
Here we define the linear operator with dimensions (nData, nParam). In practive, you may have a problem-specific linear operator which you would like to construct or load here.
# Number of data observations (rows)
nData = 20
# Create the linear operator for the tutorial. The columns of the linear operator
# represents a set of decaying and oscillating functions.
jk = np.linspace(1.0, 60.0, nData)
p = -0.25
q = 0.25
def g(k):
    return np.exp(p * jk[k] * mesh.cell_centers_x) * np.cos(
        np.pi * q * jk[k] * mesh.cell_centers_x
    )
G = np.empty((nData, nParam))
for i in range(nData):
    G[i, :] = g(i)
# Plot the columns of G
fig = plt.figure(figsize=(8, 5))
ax = fig.add_subplot(111)
for i in range(G.shape[0]):
    ax.plot(G[i, :])
ax.set_title("Columns of matrix G")

Text(0.5, 1.0, 'Columns of matrix G')
Defining the Simulation#
The simulation defines the relationship between the model parameters and predicted data.
Predict Synthetic Data#
Here, we use the true model to create synthetic data which we will subsequently invert.
# Standard deviation of Gaussian noise being added
std = 0.02
np.random.seed(1)
# Create a SimPEG data object
data_obj = sim.make_synthetic_data(true_model, noise_floor=std, add_noise=True)
Define the Inverse Problem#
The inverse problem is defined by 3 things:
Data Misfit: a measure of how well our recovered model explains the field data
Regularization: constraints placed on the recovered model and a priori information
Optimization: the numerical approach used to solve the inverse problem
# Define the data misfit. Here the data misfit is the L2 norm of the weighted
# residual between the observed data and the data predicted for a given model.
# Within the data misfit, the residual between predicted and observed data are
# normalized by the data's standard deviation.
dmis = data_misfit.L2DataMisfit(simulation=sim, data=data_obj)
# Define the regularization (model objective function). Here, 'p' defines the
# the norm of the smallness term and 'q' defines the norm of the smoothness
# term.
reg = regularization.Sparse(mesh, mapping=model_map)
reg.reference_model = np.zeros(nParam)
p = 0.0
q = 0.0
reg.norms = [p, q]
# Define how the optimization problem is solved.
opt = optimization.ProjectedGNCG(
    maxIter=100, lower=-2.0, upper=2.0, maxIterLS=20, cg_maxiter=30, cg_rtol=1e-3
)
# Here we define the inverse problem that is to be solved
inv_prob = inverse_problem.BaseInvProblem(dmis, reg, opt)
Define Inversion Directives#
Here we define any directiveas that are carried out during the inversion. This includes the cooling schedule for the trade-off parameter (beta), stopping criteria for the inversion and saving inversion results at each iteration.
# Add sensitivity weights but don't update at each beta
sensitivity_weights = directives.UpdateSensitivityWeights(every_iteration=False)
# Reach target misfit for L2 solution, then use IRLS until model stops changing.
IRLS = directives.UpdateIRLS(max_irls_iterations=40, f_min_change=1e-4)
# Defining a starting value for the trade-off parameter (beta) between the data
# misfit and the regularization.
starting_beta = directives.BetaEstimate_ByEig(beta0_ratio=1e0)
# Update the preconditionner
update_Jacobi = directives.UpdatePreconditioner()
# Save output at each iteration
saveDict = directives.SaveOutputEveryIteration(save_txt=False)
# Define the directives as a list
directives_list = [
    sensitivity_weights,
    IRLS,
    starting_beta,
    update_Jacobi,
    saveDict,
]
/home/vsts/work/1/s/simpeg/directives/_directives.py:1865: FutureWarning:
SaveEveryIteration.save_txt has been deprecated, please use SaveEveryIteration.on_disk. It will be removed in version 0.26.0 of SimPEG.
/home/vsts/work/1/s/simpeg/directives/_directives.py:1866: FutureWarning:
SaveEveryIteration.save_txt has been deprecated, please use SaveEveryIteration.on_disk. It will be removed in version 0.26.0 of SimPEG.
Setting a Starting Model and Running the Inversion#
To define the inversion object, we need to define the inversion problem and the set of directives. We can then run the inversion.
# Here we combine the inverse problem and the set of directives
inv = inversion.BaseInversion(inv_prob, directives_list)
# Starting model
starting_model = 1e-4 * np.ones(nParam)
# Run inversion
recovered_model = inv.run(starting_model)
Running inversion with SimPEG v0.25.0
================================================= Projected GNCG =================================================
  #     beta     phi_d     phi_m       f      |proj(x-g)-x|  LS   iter_CG   CG |Ax-b|/|b|  CG |Ax-b|   Comment
-----------------------------------------------------------------------------------------------------------------
   0  2.78e+06  3.78e+03  1.01e-09  3.78e+03                         0           inf          inf
   1  2.78e+06  2.32e+03  2.01e-04  2.88e+03    1.96e+01      0      7        8.45e-04     4.07e+00
   2  1.39e+06  1.75e+03  5.04e-04  2.45e+03    1.92e+01      0      8        5.66e-04     5.78e-01
   3  6.94e+05  1.14e+03  1.13e-03  1.93e+03    1.89e+01      0      9        3.90e-04     2.96e-01
   4  3.47e+05  6.40e+02  2.16e-03  1.39e+03    1.83e+01      0      10       4.67e-04     2.57e-01
   5  1.74e+05  3.07e+02  3.50e-03  9.14e+02    1.72e+01      0      12       4.43e-04     1.68e-01
   6  8.68e+04  1.33e+02  4.88e-03  5.57e+02    1.56e+01      0      14       5.87e-04     1.40e-01
   7  4.34e+04  5.75e+01  6.07e-03  3.21e+02    1.39e+01      0      17       7.73e-04     1.09e-01
   8  2.17e+04  2.90e+01  6.96e-03  1.80e+02    1.28e+01      0      22       9.47e-04     7.39e-02
   9  1.08e+04  1.85e+01  7.63e-03  1.01e+02    1.13e+01      0      29       8.41e-04     3.53e-02
Reached starting chifact with l2-norm regularization: Start IRLS steps...
irls_threshold 1.189250648941873
  10  1.08e+04  2.54e+01  9.33e-03  1.27e+02    1.51e+01      0      30       1.33e-03     3.38e-02
  11  8.35e+03  2.62e+01  1.06e-02  1.15e+02    3.16e+00      0      30       2.20e-03     1.83e-02
  12  6.31e+03  2.57e+01  1.16e-02  9.92e+01    3.78e+00      0      30       1.60e-03     1.29e-02
  13  4.82e+03  2.45e+01  1.25e-02  8.46e+01    4.78e+00      0      30       1.22e-03     9.28e-03
  14  3.78e+03  2.27e+01  1.29e-02  7.13e+01    5.20e+00      0      28       6.97e-04     5.17e-03
  15  3.08e+03  2.06e+01  1.26e-02  5.93e+01    5.30e+00      0      30       1.18e-03     8.44e-03
  16  3.08e+03  1.99e+01  1.14e-02  5.49e+01    5.06e+00      0      30       2.87e-03     1.53e-02
  17  3.08e+03  1.91e+01  1.00e-02  5.00e+01    5.24e+00      0      30       2.60e-03     1.43e-02
  18  3.08e+03  1.82e+01  8.68e-03  4.50e+01    5.37e+00      0      30       2.17e-03     1.25e-02
  19  3.08e+03  1.75e+01  7.42e-03  4.03e+01    5.63e+00      0      30       5.89e-04     3.57e-03
  20  4.84e+03  1.91e+01  5.84e-03  4.74e+01    1.26e+01      0      21       7.52e-04     1.77e-02
  21  4.84e+03  1.89e+01  4.98e-03  4.30e+01    7.65e+00      0      19       8.30e-04     7.45e-03
  22  4.84e+03  1.84e+01  4.16e-03  3.86e+01    7.54e+00      0      21       6.46e-04     5.60e-03
  23  4.84e+03  1.79e+01  3.50e-03  3.48e+01    8.03e+00      0      22       7.62e-04     7.51e-03
  24  7.54e+03  1.86e+01  2.70e-03  3.90e+01    1.28e+01      0      20       7.05e-04     2.29e-02
  25  7.54e+03  1.84e+01  2.27e-03  3.55e+01    8.18e+00      0      20       8.98e-04     1.09e-02
  26  7.54e+03  1.84e+01  1.96e-03  3.32e+01    9.47e+00      0      23       6.76e-04     9.05e-03
  27  7.54e+03  1.84e+01  1.71e-03  3.13e+01    9.03e+00      0      24       2.32e-04     3.21e-03
  28  7.54e+03  1.83e+01  1.49e-03  2.96e+01    9.09e+00      0      21       4.03e-04     6.71e-03
  29  7.54e+03  1.82e+01  1.30e-03  2.80e+01    9.15e+00      0      20       8.91e-04     1.54e-02
  30  7.54e+03  1.80e+01  1.13e-03  2.66e+01    8.99e+00      0      18       8.99e-04     1.49e-02
  31  7.54e+03  1.79e+01  9.83e-04  2.53e+01    8.95e+00      0      20       7.03e-04     1.29e-02
  32  1.18e+04  1.84e+01  7.93e-04  2.77e+01    1.40e+01      0      18       8.36e-04     6.90e-02
  33  1.18e+04  1.84e+01  6.85e-04  2.64e+01    9.42e+00      0      22       8.72e-04     2.31e-02
  34  1.18e+04  1.83e+01  5.92e-04  2.53e+01    9.52e+00      0      23       5.98e-04     1.74e-02
  35  1.18e+04  1.83e+01  5.10e-04  2.43e+01    9.63e+00      0      26       8.60e-04     2.74e-02
  36  1.18e+04  1.83e+01  4.38e-04  2.34e+01    9.74e+00      0      27       8.01e-04     2.75e-02
  37  1.18e+04  1.83e+01  3.74e-04  2.27e+01    9.98e+00      0      26       9.13e-04     3.33e-02
  38  1.18e+04  1.83e+01  3.17e-04  2.21e+01    1.00e+01      0      26       5.06e-04     1.93e-02
  39  1.18e+04  1.84e+01  2.68e-04  2.15e+01    9.92e+00      0      26       4.40e-04     1.67e-02
  40  1.18e+04  1.84e+01  2.26e-04  2.11e+01    9.70e+00      0      26       8.38e-04     3.06e-02
  41  1.18e+04  1.84e+01  1.92e-04  2.07e+01    9.73e+00      0      27       5.27e-04     1.99e-02
  42  1.18e+04  1.84e+01  1.64e-04  2.03e+01    9.85e+00      0      27       7.39e-04     2.96e-02
  43  1.18e+04  1.84e+01  1.41e-04  2.01e+01    1.10e+01      0      28       3.08e-04     1.29e-02
  44  1.18e+04  1.84e+01  1.21e-04  1.98e+01    9.91e+00      1      28       4.48e-04     1.86e-02
  45  1.18e+04  1.84e+01  1.04e-04  1.96e+01    1.16e+01      3      29       4.09e-04     2.69e-02
  46  1.18e+04  1.83e+01  9.10e-05  1.94e+01    1.45e+01      0      26       4.44e-04     4.76e-02
  47  1.18e+04  1.83e+01  7.45e-05  1.91e+01    1.05e+01      2      30       2.89e-01     1.40e+01
  48  1.18e+04  1.77e+01  8.14e-05  1.87e+01    1.70e+01      0      27       5.21e-04     4.78e-02
  49  1.84e+04  1.77e+01  5.03e-05  1.86e+01    1.56e+01      5      30       6.52e-01     1.35e+02
Reach maximum number of IRLS cycles: 40
------------------------- STOP! -------------------------
1 : |fc-fOld| = 7.3062e-03 <= tolF*(1+|f0|) = 3.7851e+02
1 : |xc-x_last| = 1.4987e-02 <= tolX*(1+|x0|) = 1.0010e-01
0 : |proj(x-g)-x|    = 1.5637e+01 <= tolG          = 1.0000e-01
0 : |proj(x-g)-x|    = 1.5637e+01 <= 1e3*eps       = 1.0000e-02
0 : maxIter   =     100    <= iter          =     49
------------------------- DONE! -------------------------
Plotting Results#
fig, ax = plt.subplots(1, 2, figsize=(12 * 1.2, 4 * 1.2))
# True versus recovered model
ax[0].plot(mesh.cell_centers_x, true_model, "k-")
ax[0].plot(mesh.cell_centers_x, inv_prob.l2model, "b-")
ax[0].plot(mesh.cell_centers_x, recovered_model, "r-")
ax[0].legend(("True Model", "Recovered L2 Model", "Recovered Sparse Model"))
ax[0].set_ylim([-2, 2])
# Observed versus predicted data
ax[1].plot(data_obj.dobs, "k-")
ax[1].plot(inv_prob.dpred, "ko")
ax[1].legend(("Observed Data", "Predicted Data"))
# Plot convergence
fig = plt.figure(figsize=(9, 5))
ax = fig.add_axes([0.2, 0.1, 0.7, 0.85])
ax.plot(saveDict.phi_d, "k", lw=2)
twin = ax.twinx()
twin.plot(saveDict.phi_m, "k--", lw=2)
ax.plot(
    np.r_[IRLS.metrics.start_irls_iter, IRLS.metrics.start_irls_iter],
    np.r_[0, np.max(saveDict.phi_d)],
    "k:",
)
ax.text(
    IRLS.metrics.start_irls_iter,
    0.0,
    "IRLS Start",
    va="bottom",
    ha="center",
    rotation="vertical",
    size=12,
    bbox={"facecolor": "white"},
)
ax.set_ylabel(r"$\phi_d$", size=16, rotation=0)
ax.set_xlabel("Iterations", size=14)
twin.set_ylabel(r"$\phi_m$", size=16, rotation=0)
Text(865.1527777777777, 0.5, '$\\phi_m$')
Total running time of the script: (0 minutes 37.230 seconds)
Estimated memory usage: 319 MB
 
    
