SimPEG.electromagnetics.time_domain.Simulation3DMagneticFluxDensity#
- class SimPEG.electromagnetics.time_domain.Simulation3DMagneticFluxDensity(mesh, survey=None, dt_threshold=1e-08, **kwargs)[source]#
- Bases: - BaseTDEMSimulation- Starting from the quasi-static E-B formulation of Maxwell’s equations (semi-discretized) \[\begin{split}\mathbf{C} \mathbf{e} + \frac{\partial \mathbf{b}}{\partial t} = \mathbf{s_m} \\ \mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^f} \mathbf{b} - \mathbf{M_{\sigma}^e} \mathbf{e} = \mathbf{s_e}\end{split}\]- where \(\mathbf{s_e}\) is an integrated quantity, we eliminate \(\mathbf{e}\) using \[\mathbf{e} = \mathbf{M_{\sigma}^e}^{-1} \mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^f} \mathbf{b} - \mathbf{M_{\sigma}^e}^{-1} \mathbf{s_e}\]- to obtain a second order semi-discretized system in \(\mathbf{b}\) \[\mathbf{C} \mathbf{M_{\sigma}^e}^{-1} \mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^f} \mathbf{b} + \frac{\partial \mathbf{b}}{\partial t} = \mathbf{C} \mathbf{M_{\sigma}^e}^{-1} \mathbf{s_e} + \mathbf{s_m}\]- and moving everything except the time derivative to the rhs gives \[\frac{\partial \mathbf{b}}{\partial t} = -\mathbf{C} \mathbf{M_{\sigma}^e}^{-1} \mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^f} \mathbf{b} + \mathbf{C} \mathbf{M_{\sigma}^e}^{-1} \mathbf{s_e} + \mathbf{s_m}\]- For the time discretization, we use backward euler. To solve for the \(n+1\) th time step, we have \[\frac{\mathbf{b}^{n+1} - \mathbf{b}^{n}}{\mathbf{dt}} = -\mathbf{C} \mathbf{M_{\sigma}^e}^{-1} \mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^f} \mathbf{b}^{n+1} + \mathbf{C} \mathbf{M_{\sigma}^e}^{-1} \mathbf{s_e}^{n+1} + \mathbf{s_m}^{n+1}\]- re-arranging to put \(\mathbf{b}^{n+1}\) on the left hand side gives \[(\mathbf{I} + \mathbf{dt} \mathbf{C} \mathbf{M_{\sigma}^e}^{-1} \mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^f}) \mathbf{b}^{n+1} = \mathbf{b}^{n} + \mathbf{dt}(\mathbf{C} \mathbf{M_{\sigma}^e}^{-1} \mathbf{s_e}^{n+1} + \mathbf{s_m}^{n+1})\]- Attributes - Cell center inner product matrix. - Cell center property inner product matrix. - Cell center property inner product inverse matrix. - Cell center property inner product matrix. - Cell center property inner product inverse matrix. - Cell center property inner product matrix. - Cell center property inner product inverse matrix. - Cell center property inner product matrix. - Cell center property inner product inverse matrix. - Edge inner product matrix. - Edge inner product inverse matrix. - Edge property inner product matrix. - Edge property inner product inverse matrix. - Edge property inner product matrix. - Edge property inner product inverse matrix. - Edge property inner product matrix. - Edge property inner product inverse matrix. - Edge property inner product matrix. - Edge property inner product inverse matrix. - Face inner product matrix. - Face inner product inverse matrix. - Face property inner product matrix. - Face property inner product inverse matrix. - Face property inner product matrix. - Face property inner product inverse matrix. - Face property inner product matrix. - Face property inner product inverse matrix. - Face property inner product matrix. - Face property inner product inverse matrix. - Node inner product matrix. - Node inner product inverse matrix. - Node property inner product matrix. - Node property inner product inverse matrix. - Node property inner product matrix. - Node property inner product inverse matrix. - Node property inner product matrix. - Node property inner product inverse matrix. - Node property inner product matrix. - Node property inner product inverse matrix. - A list of solver objects to clean when the model is updated - SimPEG - Counterobject to store iterations and run-times.- matrices to be deleted if the model for conductivity/resistivity is updated - The threshold used to determine if a previous matrix factor can be reused. - Mesh for the simulation. - The inversion model. - Magnetic permeability (h/m) physical property model. - Derivative of Magnetic Permeability (H/m) wrt the model. - Mapping of the inversion model to Magnetic Permeability (H/m). - Inverse magnetic permeability (m/h) physical property model. - Derivative of Inverse Magnetic Permeability (m/H) wrt the model. - Mapping of the inversion model to Inverse Magnetic Permeability (m/H). - Total number of time steps. - True if a model is necessary - Electrical resistivity (ohm m) physical property model. - Derivative of Electrical resistivity (Ohm m) wrt the model. - Mapping of the inversion model to Electrical resistivity (Ohm m). - Path to directory where sensitivity file is stored. - Electrical conductivity (s/m) physical property model. - Derivative of Electrical conductivity (S/m) wrt the model. - Mapping of the inversion model to Electrical conductivity (S/m). - Numerical solver used in the forward simulation. - Solver-specific parameters. - Whether to store inner product matrices - The survey for the simulation Returns ------- SimPEG.electromagnetics.time_domain.survey.Survey - Initial time, in seconds, for the time-dependent forward simulation. - Time mesh for easy interpolation to observation times. - Time step lengths, in seconds, for the time domain simulation. - Evaluation times. - Verbose progress printout. - Adcinv - MccI - Vol - Methods - Fields_Derivs- alias of - FieldsDerivativesEB- Jtvec(m, v[, f])- Jvec computes the adjoint of the sensitivity times a vector - Jtvec_approx(m, v[, f])- Approximation of the Jacobian transpose times a vector for the model provided. - Jvec(m, v[, f])- Jvec computes the sensitivity times a vector - Jvec_approx(m, v[, f])- Approximation of the Jacobian times a vector for the model provided. - MccMuDeriv(u[, v, adjoint])- Derivative of MccProperty with respect to the model. - MccMuIDeriv(u[, v, adjoint])- Derivative of MccPropertyI with respect to the model. - MccMuiDeriv(u[, v, adjoint])- Derivative of MccProperty with respect to the model. - MccMuiIDeriv(u[, v, adjoint])- Derivative of MccPropertyI with respect to the model. - MccRhoDeriv(u[, v, adjoint])- Derivative of MccProperty with respect to the model. - MccRhoIDeriv(u[, v, adjoint])- Derivative of MccPropertyI with respect to the model. - MccSigmaDeriv(u[, v, adjoint])- Derivative of MccProperty with respect to the model. - MccSigmaIDeriv(u[, v, adjoint])- Derivative of MccPropertyI with respect to the model. - MeMuDeriv(u[, v, adjoint])- Derivative of MeProperty with respect to the model. - MeMuIDeriv(u[, v, adjoint])- Derivative of MePropertyI with respect to the model. - MeMuiDeriv(u[, v, adjoint])- Derivative of MeProperty with respect to the model. - MeMuiIDeriv(u[, v, adjoint])- Derivative of MePropertyI with respect to the model. - MeRhoDeriv(u[, v, adjoint])- Derivative of MeProperty with respect to the model. - MeRhoIDeriv(u[, v, adjoint])- Derivative of MePropertyI with respect to the model. - MeSigmaDeriv(u[, v, adjoint])- Derivative of MeProperty with respect to the model. - MeSigmaIDeriv(u[, v, adjoint])- Derivative of MePropertyI with respect to the model. - MfMuDeriv(u[, v, adjoint])- Derivative of MfProperty with respect to the model. - MfMuIDeriv(u[, v, adjoint])- I Derivative of MfPropertyI with respect to the model. - MfMuiDeriv(u[, v, adjoint])- Derivative of MfProperty with respect to the model. - MfMuiIDeriv(u[, v, adjoint])- I Derivative of MfPropertyI with respect to the model. - MfRhoDeriv(u[, v, adjoint])- Derivative of MfProperty with respect to the model. - MfRhoIDeriv(u[, v, adjoint])- I Derivative of MfPropertyI with respect to the model. - MfSigmaDeriv(u[, v, adjoint])- Derivative of MfProperty with respect to the model. - MfSigmaIDeriv(u[, v, adjoint])- I Derivative of MfPropertyI with respect to the model. - MnMuDeriv(u[, v, adjoint])- Derivative of MnProperty with respect to the model. - MnMuIDeriv(u[, v, adjoint])- Derivative of MnPropertyI with respect to the model. - MnMuiDeriv(u[, v, adjoint])- Derivative of MnProperty with respect to the model. - MnMuiIDeriv(u[, v, adjoint])- Derivative of MnPropertyI with respect to the model. - MnRhoDeriv(u[, v, adjoint])- Derivative of MnProperty with respect to the model. - MnRhoIDeriv(u[, v, adjoint])- Derivative of MnPropertyI with respect to the model. - MnSigmaDeriv(u[, v, adjoint])- Derivative of MnProperty with respect to the model. - MnSigmaIDeriv(u[, v, adjoint])- Derivative of MnPropertyI with respect to the model. - dpred([m, f])- Predicted data for the model provided. - fields(m)- Solve the forward problem for the fields. - fieldsPair- alias of - Fields3DMagneticFluxDensity- getAdiag(tInd)- System matrix at a given time index - getAdiagDeriv(tInd, u, v[, adjoint])- Derivative of ADiag - getAsubdiag(tInd)- Matrix below the diagonal - Ask the sources for initial fields - getRHS(tInd)- Assemble the RHS - getRHSDeriv(tInd, src, v[, adjoint])- Derivative of the RHS - getSourceTerm(tInd)- Assemble the source term. - make_synthetic_data(m[, relative_error, ...])- Make synthetic data for the model and Gaussian noise provided. - residual(m, dobs[, f])- The data residual. - getAsubdiagDeriv - getInitialFieldsDeriv 
Galleries and Tutorials using SimPEG.electromagnetics.time_domain.Simulation3DMagneticFluxDensity#
 
3D Forward Simulation for Transient Response on a Cylindrical Mesh
 
 
 
 
