simpeg.electromagnetics.time_domain.Simulation3DCurrentDensity.getAdcDeriv#
- Simulation3DCurrentDensity.getAdcDeriv(u, v, adjoint=False)[source]#
Derivative operation for the DC resistivity system matrix times a vector.
The discrete solution to the 3D DC resistivity problem is expressed as:
where
is the DC resistivity system matrix, is the discrete solution for the electric potentials at the initial time, and is the galvanic source term. For a vector , this method assumes the discrete solution is fixed and returnsOr the adjoint operation
- Parameters:
- u(n_cells,)
numpy.ndarray
The solution for the fields for the current model; i.e. electric potentials at cell centers.
- v
numpy.ndarray
The vector. (n_param,) for the standard operation. (n_cells,) for the adjoint operation.
- adjointbool
Whether to perform the adjoint operation.
- u(n_cells,)
- Returns:
numpy.ndarray
Derivative of the DC resistivity system matrix times a vector. (n_cells,) for the standard operation. (n_param,) for the adjoint operation.