simpeg.potential_fields.magnetics.Simulation3DDifferential.Jtvec#
- Simulation3DDifferential.Jtvec(m, v, u=None)[source]#
Computing Jacobian^T multiplied by vector.
\[(\frac{\delta \mathbf{P}\mathbf{B}} {\delta \mathbf{m}})^{T} = \left[ \mathbf{P}_{deriv}\frac{\partial \mathbf{\mu} } {\partial \mathbf{m} } \left[ \diag(\M^f_{\mu_{0}^{-1} } \mathbf{B}_0) \dMfMuI - \diag (\Div^T\mathbf{u})\dMfMuI \right ] \right]^{T} - \left[ \mathbf{P}_{deriv}(\MfMui)^{-1} \Div^T \frac{\delta\mathbf{u}}{\delta \mathbf{m}} \right]^{T}\]where
\[\mathbf{P}_{derv} = \frac{\partial \mathbf{P}}{\partial\mathbf{B}}\]Note
Here we only want to compute
\[\mathbf{J}^{T}\mathbf{v} = (\frac{\delta \mathbf{P}\mathbf{B}} {\delta \mathbf{m}})^{T} \mathbf{v}\]