simpeg.potential_fields.magnetics.Simulation3DDifferential#

class simpeg.potential_fields.magnetics.Simulation3DDifferential(mesh, survey=None, **kwargs)[source]#

Bases: BaseMagneticPDESimulation

Secondary field approach using differential equations!

Attributes

Mcc

Cell center inner product matrix.

MccMu

Cell center property inner product matrix.

MccMuI

Cell center property inner product inverse matrix.

MccMui

Cell center property inner product matrix.

MccMuiI

Cell center property inner product inverse matrix.

Me

Edge inner product matrix.

MeI

Edge inner product inverse matrix.

MeMu

Edge property inner product matrix.

MeMuI

Edge property inner product inverse matrix.

MeMui

Edge property inner product matrix.

MeMuiI

Edge property inner product inverse matrix.

Mf

Face inner product matrix.

MfI

Face inner product inverse matrix.

MfMu

Face property inner product matrix.

MfMuI

Face property inner product inverse matrix.

MfMui

Face property inner product matrix.

MfMuiI

Face property inner product inverse matrix.

Mn

Node inner product matrix.

MnI

Node inner product inverse matrix.

MnMu

Node property inner product matrix.

MnMuI

Node property inner product inverse matrix.

MnMui

Node property inner product matrix.

MnMuiI

Node property inner product inverse matrix.

clean_on_model_update

A list of solver objects to clean when the model is updated

counter

SimPEG Counter object to store iterations and run-times.

deleteTheseOnModelUpdate

HasModel.deleteTheseOnModelUpdate has been deprecated.

mesh

Mesh for the simulation.

model

The inversion model.

mu

Magnetic permeability (h/m) physical property model.

muDeriv

Derivative of Magnetic Permeability (H/m) wrt the model.

muMap

Mapping of the inversion model to Magnetic Permeability (H/m).

mui

Inverse magnetic permeability (m/h) physical property model.

muiDeriv

Derivative of Inverse Magnetic Permeability (m/H) wrt the model.

muiMap

Mapping of the inversion model to Inverse Magnetic Permeability (m/H).

needs_model

True if a model is necessary

sensitivity_path

Path to directory where sensitivity file is stored.

solver

Numerical solver used in the forward simulation.

solver_opts

Solver-specific parameters.

survey

The survey for this simulation.

verbose

Verbose progress printout.

MccI

MfMu0

Qfx

Qfy

Qfz

Vol

Methods

Jtvec(m, v[, u])

Computing Jacobian^T multiplied by vector.

Jtvec_approx(m, v[, f])

Approximation of the Jacobian transpose times a vector for the model provided.

Jvec(m, v[, u])

Computing Jacobian multiplied by vector

Jvec_approx(m, v[, f])

Approximation of the Jacobian times a vector for the model provided.

MccMuDeriv(u[, v, adjoint])

Derivative of MccProperty with respect to the model.

MccMuIDeriv(u[, v, adjoint])

Derivative of MccPropertyI with respect to the model.

MccMuiDeriv(u[, v, adjoint])

Derivative of MccProperty with respect to the model.

MccMuiIDeriv(u[, v, adjoint])

Derivative of MccPropertyI with respect to the model.

MeMuDeriv(u[, v, adjoint])

Derivative of MeProperty with respect to the model.

MeMuIDeriv(u[, v, adjoint])

Derivative of MePropertyI with respect to the model.

MeMuiDeriv(u[, v, adjoint])

Derivative of MeProperty with respect to the model.

MeMuiIDeriv(u[, v, adjoint])

Derivative of MePropertyI with respect to the model.

MfMuDeriv(u[, v, adjoint])

Derivative of MfProperty with respect to the model.

MfMuIDeriv(u[, v, adjoint])

I Derivative of MfPropertyI with respect to the model.

MfMuiDeriv(u[, v, adjoint])

Derivative of MfProperty with respect to the model.

MfMuiIDeriv(u[, v, adjoint])

I Derivative of MfPropertyI with respect to the model.

MnMuDeriv(u[, v, adjoint])

Derivative of MnProperty with respect to the model.

MnMuIDeriv(u[, v, adjoint])

Derivative of MnPropertyI with respect to the model.

MnMuiDeriv(u[, v, adjoint])

Derivative of MnProperty with respect to the model.

MnMuiIDeriv(u[, v, adjoint])

Derivative of MnPropertyI with respect to the model.

dpred([m, f])

Predicted data for the model provided.

fields(m)

Return magnetic potential (u) and flux (B)

getA(m)

GetA creates and returns the A matrix for the Magnetics problem

getB0()

To use getB0 method, SimPEG requires that the survey be specified.

getRHS(m)

make_synthetic_data(m[, relative_error, ...])

Make synthetic data for the model and Gaussian noise provided.

projectFields(u)

This function projects the fields onto the data space.

projectFieldsDeriv(B)

This function projects the fields onto the data space.

residual(m, dobs[, f])

The data residual.

makeMassMatrices

projectFieldsAsVector