simpeg.maps.LogisticSigmoidMap#
- class simpeg.maps.LogisticSigmoidMap(mesh=None, nP=None, lower_bound=0, upper_bound=1, **kwargs)[source]#
- Bases: - IdentityMap- Mapping that computes the logistic sigmoid of the model parameters. - Where \(\mathbf{m}\) is a set of model parameters, - LogisticSigmoidMapcreates a mapping \(\mathbf{u}(\mathbf{m})\) that computes the logistic sigmoid of every element in \(\mathbf{m}\); i.e.:\[\mathbf{u}(\mathbf{m}) = sigmoid(\mathbf{m}) = \frac{1}{1+\exp{-\mathbf{m}}}\]- LogisticSigmoidMaptransforms values onto the interval (0,1), but can optionally be scaled and shifted to the interval (a,b). This can be useful for inversion of data that varies over a log scale and bounded on some interval:\[\mathbf{u}(\mathbf{m}) = a + (b - a) \cdot sigmoid(\mathbf{m})\]- Parameters:
- meshdiscretize.BaseMesh
- The number of parameters accepted by the mapping is set to equal the number of mesh cells. 
- nPint
- Set the number of parameters accepted by the mapping directly. Used if the number of parameters is known. Used generally when the number of parameters is not equal to the number of cells in a mesh. 
- lower_bound: float or (nP) numpy.ndarray
- lower bound (a) for the transform. Default 0. Defined in mathbf{u} space. 
- upper_bound: float or (nP) numpy.ndarray
- upper bound (b) for the transform. Default 1. Defined in mathbf{u} space. 
 
- mesh
 - Attributes - Determine whether or not this mapping is a linear operation. - The lower bound - The mesh used for the mapping - Number of parameters the mapping acts on. - Dimensions of the mapping operator - The upper bound - Methods - deriv(m[, v])- Derivative of mapping with respect to the input parameters. - dot(map1)- Multiply two mappings to create a - simpeg.maps.ComboMap.- inverse(m)- Apply the inverse of the mapping to an array. - test([m, num, random_seed])- Derivative test for the mapping. 
