simpeg.maps.ParametricLayer.deriv#
- ParametricLayer.deriv(m, v=None)[source]#
- Derivative of the mapping with respect to the input parameters. - Let \(\mathbf{m} = [\sigma_0, \;\sigma_1,\; z_L , \; h]\) be the set of model parameters the defines a layer within a wholespace. The mapping :math:`mathbf{u}(mathbf{m})`from the parameterized model to all active cells is given by: \[\mathbf{u}(\mathbf{m}) = \sigma_0 + \frac{(\sigma_1 - \sigma_0)}{\pi} \Bigg [ \arctan \Bigg ( a \bigg ( \mathbf{z_c} - z_L + \frac{h}{2} \bigg ) \Bigg ) - \arctan \Bigg ( a \bigg ( \mathbf{z_c} - z_L - \frac{h}{2} \bigg ) \Bigg ) \Bigg ]\]- where \(\mathbf{z_c}\) is a vectors containing the vertical cell center locations for all active cells in the mesh. The derivative of the mapping with respect to the model parameters is a - numpy.ndarrayof shape (nAct, 4) given by:\[\frac{\partial \mathbf{u}}{\partial \mathbf{m}} = \Bigg [ \frac{\partial \mathbf{u}}{\partial \sigma_0} \;\; \frac{\partial \mathbf{u}}{\partial \sigma_1} \;\; \frac{\partial \mathbf{u}}{\partial z_L} \;\; \frac{\partial \mathbf{u}}{\partial h} \Bigg ]\]- Parameters:
- m(nP)numpy.ndarray
- A vector representing a set of model parameters 
- v(nP)numpy.ndarray
- If not - None, the method returns the derivative times the vector v
 
- m(
- Returns:
- scipy.sparse.csr_matrix
- Derivative of the mapping with respect to the model parameters. If the input argument v is not - None, the method returns the derivative times the vector v.
 
 
