simpeg.electromagnetics.static.spectral_induced_polarization.Simulation3DNodal#

class simpeg.electromagnetics.static.spectral_induced_polarization.Simulation3DNodal(mesh, survey=None, tau=0.1, tauMap=None, taui=None, tauiMap=None, c=0.5, cMap=None, storeJ=False, actinds=None, storeInnerProduct=True, **kwargs)[source]#

Bases: BaseSIPSimulation, Simulation3DNodal

3D nodal Spectral IP problem

Attributes

Mcc

Cell center inner product matrix.

MccRho

Cell center property inner product matrix.

MccRhoI

Cell center property inner product inverse matrix.

MccSigma

Cell center property inner product matrix.

MccSigmaI

Cell center property inner product inverse matrix.

Me

Edge inner product matrix.

MeI

Edge inner product inverse matrix.

MeRho

Edge property inner product matrix.

MeRhoI

Edge property inner product inverse matrix.

MeSigma

Edge property inner product matrix.

MeSigmaI

Edge property inner product inverse matrix.

Mf

Face inner product matrix.

MfI

Face inner product inverse matrix.

MfRho

Face property inner product matrix.

MfRhoI

Face property inner product inverse matrix.

MfSigma

Face property inner product matrix.

MfSigmaI

Face property inner product inverse matrix.

Mn

Node inner product matrix.

MnI

Node inner product inverse matrix.

MnRho

Node property inner product matrix.

MnRhoI

Node property inner product inverse matrix.

MnSigma

Node property inner product matrix.

MnSigmaI

Node property inner product inverse matrix.

actinds

Active indices when storing J.

bc_type

Type of boundary condition to use for simulation.

c

Frequency dependency physical property model.

cDeriv

Derivative of Frequency dependency wrt the model.

cMap

Mapping of the inversion model to Frequency dependency.

clean_on_model_update

A list of solver objects to clean when the model is updated

counter

SimPEG Counter object to store iterations and run-times.

deleteTheseOnModelUpdate

matrices to be deleted if the model for conductivity/resistivity is updated

eta

Electrical chargeability (v/v) physical property model.

etaDeriv

Derivative of Electrical Chargeability (V/V) wrt the model.

etaMap

Mapping of the inversion model to Electrical Chargeability (V/V).

mesh

Mesh for the simulation.

model

The inversion model.

needs_model

True if a model is necessary

rho

Electrical Resistivity (Ohm m)

sensitivity_path

Path to directory where sensitivity file is stored.

sigma

Electrical Conductivity (S/m)

solver

Numerical solver used in the forward simulation.

solver_opts

Solver-specific parameters.

storeInnerProduct

Whether to store inner product matrices

storeJ

Whether to store the sensitivity matrix

surface_faces

Array defining which boundary faces to interpret as surfaces of Neumann boundary

survey

The SIP survey object.

tau

Time constant (s) physical property model.

tauDeriv

Derivative of Time constant (s) wrt the model.

tauMap

Mapping of the inversion model to Time constant (s).

taui

Inverse of time constant (1/s) physical property model.

tauiDeriv

Derivative of Inverse of time constant (1/s) wrt the model.

tauiMap

Mapping of the inversion model to Inverse of time constant (1/s).

verbose

Verbose progress printout.

Ainv

MccI

Vol

cDeriv_store

etaDeriv_store

n

rhoDeriv

rhoMap

sigmaDeriv

sigmaMap

tauDeriv_store

tauiDeriv_store

Methods

Jtvec(m, v[, f])

Compute adjoint sensitivity matrix (J^T) and vector (v) product.

Jtvec_approx(m, v[, f])

Approximation of the Jacobian transpose times a vector for the model provided.

Jvec(m, v[, f])

Compute sensitivity matrix (J) and vector (v) product.

Jvec_approx(m, v[, f])

Approximation of the Jacobian times a vector for the model provided.

MccRhoDeriv(u[, v, adjoint])

Derivative of MccProperty with respect to the model.

MccRhoIDeriv(u[, v, adjoint])

Derivative of MccPropertyI with respect to the model.

MccSigmaDeriv(u[, v, adjoint])

Derivative of MccProperty with respect to the model.

MccSigmaIDeriv(u[, v, adjoint])

Derivative of MccPropertyI with respect to the model.

MeRhoDeriv(u[, v, adjoint])

Derivative of MeProperty with respect to the model.

MeRhoIDeriv(u[, v, adjoint])

Derivative of MePropertyI with respect to the model.

MeSigmaDeriv(u[, v, adjoint])

Derivative of MeProperty with respect to the model.

MeSigmaIDeriv(u[, v, adjoint])

Derivative of MePropertyI with respect to the model.

MfRhoDeriv(u[, v, adjoint])

Derivative of MfProperty with respect to the model.

MfRhoIDeriv(u[, v, adjoint])

I Derivative of MfPropertyI with respect to the model.

MfSigmaDeriv(u[, v, adjoint])

Derivative of MfProperty with respect to the model.

MfSigmaIDeriv(u[, v, adjoint])

I Derivative of MfPropertyI with respect to the model.

MnRhoDeriv(u[, v, adjoint])

Derivative of MnProperty with respect to the model.

MnRhoIDeriv(u[, v, adjoint])

Derivative of MnPropertyI with respect to the model.

MnSigmaDeriv(u[, v, adjoint])

Derivative of MnProperty with respect to the model.

MnSigmaIDeriv(u[, v, adjoint])

Derivative of MnPropertyI with respect to the model.

dpred(m[, f])

Predicted data.

fields(m)

Return the computed geophysical fields for the model provided.

forward(m[, f])

getA([resistivity])

Make the A matrix for the cell centered DC resistivity problem A = G.T MeSigma G

getADeriv(u, v[, adjoint])

Product of the derivative of our system matrix with respect to the model and a vector

getJ(m[, f])

Generate Full sensitivity matrix

getJtJdiag(m, Wd[, f])

Compute JtJ using adjoint problem.

getRHS()

RHS for the DC problem q

getRHSDeriv(source, v[, adjoint])

Derivative of the right hand side with respect to the model

getSourceTerm()

Evaluates the sources, and puts them in matrix form :rtype: tuple :return: q (nC or nN, nSrc)

get_peta_c_deriv_pulse_off(t)

Compute derivative of pseudo-chargeability w.r.t eta from a single pulse waveform

get_peta_eta_deriv_pulse_off(t)

Compute derivative of pseudo-chargeability w.r.t eta from a single pulse waveform

get_peta_pulse_off(t)

Compute pseudo-chargeability from a single pulse waveform

get_peta_taui_deriv_pulse_off(t)

Compute derivative of pseudo-chargeability w.r.t eta from a single pulse waveform

make_synthetic_data(m[, relative_error, ...])

Make synthetic data for the model and Gaussian noise provided.

residual(m, dobs[, f])

The data residual.

PetaCDeriv

PetaEtaDeriv

PetaTauiDeriv

fieldsPair

get_exponent

get_multi_pulse_response

get_peta

get_peta_c_deriv

get_peta_c_deriv_step_off

get_peta_eta_deriv

get_peta_eta_deriv_step_off

get_peta_step_off

get_peta_taui_deriv

get_peta_taui_deriv_step_off

get_t_over_tau

setBC