Heagy et al., 2017 1D RESOLVE and SkyTEM Bookpurnong Inversions#

In this example, show 1D inversions of a single sounding from each of the RESOLVE and SkyTEM data sets. The original data can be downloaded from: https://storage.googleapis.com/simpeg/bookpurnong/bookpurnong.tar.gz

The forward simulation is performed on the cylindrically symmetric mesh using SimPEG.electromagnetics.frequency_domain, and SimPEG.electromagnetics.time_domain

The RESOLVE data are inverted first. This recovered model is then used as a reference model for the SkyTEM inversion

This example is published in

Lindsey J. Heagy, Rowan Cockett, Seogi Kang, Gudni K. Rosenkjaer, Douglas W. Oldenburg, A framework for simulation and inversion in electromagnetics, Computers & Geosciences, Volume 107, 2017, Pages 1-19, ISSN 0098-3004, http://dx.doi.org/10.1016/j.cageo.2017.06.018.

The script and figures are also on figshare: https://doi.org/10.6084/m9.figshare.5107711

This example was updated for SimPEG 0.14.0 on January 31st, 2020 by Joseph Capriotti

  • RESOLVE In-phase 400 Hz, SkyTEM High moment 156 $\mu$s
  • plot booky 1D time freq inv
  • (a) Recovered Models, (b) RESOLVE, (c) SkyTEM High-moment, (d) Waveform
Downloading https://storage.googleapis.com/simpeg/bookpurnong/bookpurnong_inversion.tar.gz
   saved to: /home/vsts/work/1/s/examples/20-published/bookpurnong_inversion.tar.gz
Download completed!

                        SimPEG.InvProblem is setting bfgsH0 to the inverse of the eval2Deriv.
                        ***Done using same Solver, and solver_opts as the Simulation3DMagneticFluxDensity problem***

model has any nan: 0
============================ Inexact Gauss Newton ============================
  #     beta     phi_d     phi_m       f      |proj(x-g)-x|  LS    Comment
-----------------------------------------------------------------------------
x0 has any nan: 0
   0  2.00e+00  1.24e+02  0.00e+00  1.24e+02    2.84e+01      0
   1  2.00e+00  1.83e+01  2.92e+00  2.42e+01    1.13e+01      0
   2  2.00e+00  6.08e+00  1.68e+00  9.44e+00    4.47e+00      0
------------------------- STOP! -------------------------
1 : |fc-fOld| = 0.0000e+00 <= tolF*(1+|f0|) = 1.2510e+01
0 : |xc-x_last| = 2.1944e+00 <= tolX*(1+|x0|) = 1.3820e+00
0 : |proj(x-g)-x|    = 4.4662e+00 <= tolG          = 1.0000e-01
0 : |proj(x-g)-x|    = 4.4662e+00 <= 1e3*eps       = 1.0000e-02
0 : maxIter   =       5    <= iter          =      3
------------------------- DONE! -------------------------

                        SimPEG.InvProblem is setting bfgsH0 to the inverse of the eval2Deriv.
                        ***Done using same Solver, and solver_opts as the Simulation3DElectricField problem***

model has any nan: 0
============================ Inexact Gauss Newton ============================
  #     beta     phi_d     phi_m       f      |proj(x-g)-x|  LS    Comment
-----------------------------------------------------------------------------
x0 has any nan: 0
/home/vsts/conda/envs/simpeg-test/lib/python3.8/site-packages/pymatsolver/direct.py:23: PardisoTypeConversionWarning:

Converting csc_matrix matrix to CSR format, will slow down.

/home/vsts/conda/envs/simpeg-test/lib/python3.8/site-packages/pymatsolver/direct.py:73: PardisoTypeConversionWarning:

Converting csc_matrix matrix to CSR format, will slow down.

   0  2.00e+01  2.28e+02  2.12e+01  6.53e+02    1.32e+02      0
   1  2.00e+01  4.78e+01  2.02e+00  8.83e+01    4.59e+01      0
   2  2.00e+01  1.88e+01  1.19e+00  4.27e+01    1.27e+01      0
   3  2.00e+01  1.13e+01  1.39e+00  3.90e+01    4.07e+00      0
   4  2.00e+01  1.06e+01  1.41e+00  3.87e+01    1.73e+00      0
------------------------- STOP! -------------------------
1 : |fc-fOld| = 0.0000e+00 <= tolF*(1+|f0|) = 6.5384e+01
1 : |xc-x_last| = 1.0850e-01 <= tolX*(1+|x0|) = 1.3820e+00
0 : |proj(x-g)-x|    = 1.7327e+00 <= tolG          = 1.0000e-01
0 : |proj(x-g)-x|    = 1.7327e+00 <= 1e3*eps       = 1.0000e-02
1 : maxIter   =       5    <= iter          =      5
------------------------- DONE! -------------------------
/home/vsts/work/1/s/examples/20-published/plot_booky_1D_time_freq_inv.py:478: UserWarning:

This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.

('/home/vsts/work/1/s/examples/20-published',)

import numpy as np
import h5py
import tarfile
import os
import shutil
import matplotlib
import matplotlib.pyplot as plt
from scipy.constants import mu_0
from pymatsolver import Pardiso as Solver

import discretize
from SimPEG import (
    maps,
    utils,
    data_misfit,
    regularization,
    optimization,
    inversion,
    inverse_problem,
    directives,
    data,
)
from SimPEG.electromagnetics import frequency_domain as FDEM, time_domain as TDEM


def download_and_unzip_data(
    url="https://storage.googleapis.com/simpeg/bookpurnong/bookpurnong_inversion.tar.gz",
):
    """
    Download the data from the storage bucket, unzip the tar file, return
    the directory where the data are
    """
    # download the data
    downloads = utils.download(url)

    # directory where the downloaded files are
    directory = downloads.split(".")[0]

    # unzip the tarfile
    tar = tarfile.open(downloads, "r")
    tar.extractall()
    tar.close()

    return downloads, directory


def run(plotIt=True, saveFig=False, cleanup=True):
    """
    Run 1D inversions for a single sounding of the RESOLVE and SkyTEM
    bookpurnong data

    :param bool plotIt: show the plots?
    :param bool saveFig: save the figure
    :param bool cleanup: remove the downloaded results
    """
    downloads, directory = download_and_unzip_data()

    resolve = h5py.File(os.path.sep.join([directory, "booky_resolve.hdf5"]), "r")
    skytem = h5py.File(os.path.sep.join([directory, "booky_skytem.hdf5"]), "r")
    river_path = resolve["river_path"][()]

    # Choose a sounding location to invert
    xloc, yloc = 462100.0, 6196500.0
    rxind_skytem = np.argmin(
        abs(skytem["xy"][:, 0] - xloc) + abs(skytem["xy"][:, 1] - yloc)
    )
    rxind_resolve = np.argmin(
        abs(resolve["xy"][:, 0] - xloc) + abs(resolve["xy"][:, 1] - yloc)
    )

    # Plot both resolve and skytem data on 2D plane
    fig = plt.figure(figsize=(13, 6))
    title = ["RESOLVE In-phase 400 Hz", r"SkyTEM High moment 156 $\mu$s"]
    ax1 = plt.subplot(121)
    ax2 = plt.subplot(122)
    axs = [ax1, ax2]
    out_re = utils.plot2Ddata(
        resolve["xy"],
        resolve["data"][:, 0],
        ncontour=100,
        contourOpts={"cmap": "viridis"},
        ax=ax1,
    )
    vmin, vmax = out_re[0].get_clim()
    cb_re = plt.colorbar(
        out_re[0], ticks=np.linspace(vmin, vmax, 3), ax=ax1, fraction=0.046, pad=0.04
    )
    temp_skytem = skytem["data"][:, 5].copy()
    temp_skytem[skytem["data"][:, 5] > 7e-10] = 7e-10
    out_sky = utils.plot2Ddata(
        skytem["xy"][:, :2],
        temp_skytem,
        ncontour=100,
        contourOpts={"cmap": "viridis", "vmax": 7e-10},
        ax=ax2,
    )
    vmin, vmax = out_sky[0].get_clim()
    cb_sky = plt.colorbar(
        out_sky[0],
        ticks=np.linspace(vmin, vmax * 0.99, 3),
        ax=ax2,
        format="%.1e",
        fraction=0.046,
        pad=0.04,
    )
    cb_re.set_label("Bz (ppm)")
    cb_sky.set_label("dB$_z$ / dt (V/A-m$^4$)")

    for i, ax in enumerate(axs):
        xticks = [460000, 463000]
        yticks = [6195000, 6198000, 6201000]
        ax.set_xticks(xticks)
        ax.set_yticks(yticks)
        ax.plot(xloc, yloc, "wo")
        ax.plot(river_path[:, 0], river_path[:, 1], "k", lw=0.5)

        ax.set_aspect("equal")
        if i == 1:
            ax.plot(skytem["xy"][:, 0], skytem["xy"][:, 1], "k.", alpha=0.02, ms=1)
            ax.set_yticklabels([str(" ") for f in yticks])
        else:
            ax.plot(resolve["xy"][:, 0], resolve["xy"][:, 1], "k.", alpha=0.02, ms=1)
            ax.set_yticklabels([str(f) for f in yticks])
            ax.set_ylabel("Northing (m)")
        ax.set_xlabel("Easting (m)")
        ax.set_title(title[i])
        ax.axis("equal")
    # plt.tight_layout()

    if saveFig is True:
        fig.savefig("resolve_skytem_data.png", dpi=600)

    # ------------------ Mesh ------------------ #
    # Step1: Set 2D cylindrical mesh
    cs, ncx, npad = 1.0, 10.0, 20
    hx = [(cs, ncx), (cs, npad, 1.3)]
    npad = 12
    temp = np.logspace(np.log10(1.0), np.log10(12.0), 19)
    temp_pad = temp[-1] * 1.3 ** np.arange(npad)
    hz = np.r_[temp_pad[::-1], temp[::-1], temp, temp_pad]
    mesh = discretize.CylindricalMesh([hx, 1, hz], "00C")
    active = mesh.cell_centers_z < 0.0

    # Step2: Set a SurjectVertical1D mapping
    # Note: this sets our inversion model as 1D log conductivity
    # below subsurface

    active = mesh.cell_centers_z < 0.0
    actMap = maps.InjectActiveCells(mesh, active, np.log(1e-8), nC=mesh.shape_cells[2])
    mapping = maps.ExpMap(mesh) * maps.SurjectVertical1D(mesh) * actMap
    sig_half = 1e-1
    sig_air = 1e-8
    sigma = np.ones(mesh.shape_cells[2]) * sig_air
    sigma[active] = sig_half

    # Initial and reference model
    m0 = np.log(sigma[active])

    # ------------------ RESOLVE Forward Simulation ------------------ #
    # Step3: Invert Resolve data

    # Bird height from the surface
    b_height_resolve = resolve["src_elevation"][()]
    src_height_resolve = b_height_resolve[rxind_resolve]

    # Set Rx (In-phase and Quadrature)
    rxOffset = 7.86
    bzr = FDEM.Rx.PointMagneticFluxDensitySecondary(
        np.array([[rxOffset, 0.0, src_height_resolve]]),
        orientation="z",
        component="real",
    )

    bzi = FDEM.Rx.PointMagneticFluxDensity(
        np.array([[rxOffset, 0.0, src_height_resolve]]),
        orientation="z",
        component="imag",
    )

    # Set Source (In-phase and Quadrature)
    frequency_cp = resolve["frequency_cp"][()]
    freqs = frequency_cp.copy()
    srcLoc = np.array([0.0, 0.0, src_height_resolve])
    source_list = [
        FDEM.Src.MagDipole([bzr, bzi], freq, srcLoc, orientation="Z") for freq in freqs
    ]

    # Set FDEM survey (In-phase and Quadrature)
    survey = FDEM.Survey(source_list)
    prb = FDEM.Simulation3DMagneticFluxDensity(mesh, sigmaMap=mapping, solver=Solver)
    prb.survey = survey

    # ------------------ RESOLVE Inversion ------------------ #

    # Primary field
    bp = -mu_0 / (4 * np.pi * rxOffset**3)

    # Observed data
    cpi_inds = [0, 2, 6, 8, 10]
    cpq_inds = [1, 3, 7, 9, 11]
    dobs_re = (
        np.c_[
            resolve["data"][rxind_resolve, :][cpi_inds],
            resolve["data"][rxind_resolve, :][cpq_inds],
        ].flatten()
        * bp
        * 1e-6
    )

    # Uncertainty
    relative = np.repeat(np.r_[np.ones(3) * 0.1, np.ones(2) * 0.15], 2)
    floor = 20 * abs(bp) * 1e-6
    std = abs(dobs_re) * relative + floor

    # Data Misfit
    data_resolve = data.Data(dobs=dobs_re, survey=survey, standard_deviation=std)
    dmisfit = data_misfit.L2DataMisfit(simulation=prb, data=data_resolve)

    # Regularization
    regMesh = discretize.TensorMesh([mesh.h[2][mapping.maps[-1].indActive]])
    reg = regularization.WeightedLeastSquares(
        regMesh, mapping=maps.IdentityMap(regMesh)
    )

    # Optimization
    opt = optimization.InexactGaussNewton(maxIter=5)

    # statement of the inverse problem
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)

    # Inversion directives and parameters
    target = directives.TargetMisfit()  # stop when we hit target misfit
    invProb.beta = 2.0
    inv = inversion.BaseInversion(invProb, directiveList=[target])
    reg.alpha_s = 1e-3
    reg.alpha_x = 1.0
    reg.mref = m0.copy()
    opt.LSshorten = 0.5
    opt.remember("xc")
    # run the inversion
    mopt_re = inv.run(m0)
    dpred_re = invProb.dpred

    # ------------------ SkyTEM Forward Simulation ------------------ #
    # Step4: Invert SkyTEM data

    # Bird height from the surface
    b_height_skytem = skytem["src_elevation"][()]
    src_height = b_height_skytem[rxind_skytem]
    srcLoc = np.array([0.0, 0.0, src_height])

    # Radius of the source loop
    area = skytem["area"][()]
    radius = np.sqrt(area / np.pi)
    rxLoc = np.array([[radius, 0.0, src_height]])

    # Parameters for current waveform
    t0 = skytem["t0"][()]
    times = skytem["times"][()]
    waveform_skytem = skytem["waveform"][()]
    off_time = t0
    times_off = times - t0

    # Note: we are Using theoretical VTEM waveform,
    # but effectively fits SkyTEM waveform
    peak_time = 1.0000000e-02

    dbdt_z = TDEM.Rx.PointMagneticFluxTimeDerivative(
        locations=rxLoc, times=times_off[:-3] + off_time, orientation="z"
    )  # vertical db_dt

    receiver_list = [dbdt_z]  # list of receivers
    source_list = [
        TDEM.Src.CircularLoop(
            receiver_list,
            location=srcLoc,
            radius=radius,
            orientation="z",
            waveform=TDEM.Src.VTEMWaveform(
                off_time=off_time, peak_time=peak_time, ramp_on_rate=3.0
            ),
        )
    ]
    # solve the problem at these times
    timeSteps = [
        (peak_time / 5, 5),
        ((off_time - peak_time) / 5, 5),
        (1e-5, 5),
        (5e-5, 5),
        (1e-4, 10),
        (5e-4, 15),
    ]
    prob = TDEM.Simulation3DElectricField(
        mesh, time_steps=timeSteps, sigmaMap=mapping, solver=Solver
    )
    survey = TDEM.Survey(source_list)
    prob.survey = survey

    src = source_list[0]
    rx = src.receiver_list[0]
    wave = []
    for time in prob.times:
        wave.append(src.waveform.eval(time))
    wave = np.hstack(wave)

    # plot the waveform
    fig = plt.figure(figsize=(5, 3))
    times_off = times - t0
    plt.plot(waveform_skytem[:, 0], waveform_skytem[:, 1], "k.")
    plt.plot(prob.times, wave, "k-", lw=2)
    plt.legend(("SkyTEM waveform", "Waveform (fit)"), fontsize=10)
    for t in rx.times:
        plt.plot(np.ones(2) * t, np.r_[-0.03, 0.03], "k-")
    plt.ylim(-0.1, 1.1)
    plt.grid(True)
    plt.xlabel("Time (s)")
    plt.ylabel("Normalized current")

    if saveFig:
        fig.savefig("skytem_waveform", dpi=200)

    # Observed data
    dobs_sky = skytem["data"][rxind_skytem, :-3] * area

    # ------------------ SkyTEM Inversion ------------------ #
    # Uncertainty
    relative = 0.12
    floor = 7.5e-12
    std = abs(dobs_sky) * relative + floor

    # Data Misfit
    data_sky = data.Data(dobs=-dobs_sky, survey=survey, standard_deviation=std)
    dmisfit = data_misfit.L2DataMisfit(simulation=prob, data=data_sky)

    # Regularization
    regMesh = discretize.TensorMesh([mesh.h[2][mapping.maps[-1].indActive]])
    reg = regularization.WeightedLeastSquares(
        regMesh, mapping=maps.IdentityMap(regMesh)
    )

    # Optimization
    opt = optimization.InexactGaussNewton(maxIter=5)

    # statement of the inverse problem
    invProb = inverse_problem.BaseInvProblem(dmisfit, reg, opt)

    # Directives and Inversion Parameters
    target = directives.TargetMisfit()
    invProb.beta = 20.0
    inv = inversion.BaseInversion(invProb, directiveList=[target])
    reg.alpha_s = 1e-1
    reg.alpha_x = 1.0
    opt.LSshorten = 0.5
    opt.remember("xc")
    reg.mref = mopt_re  # Use RESOLVE model as a reference model

    # run the inversion
    mopt_sky = inv.run(m0)
    dpred_sky = invProb.dpred

    # Plot the figure from the paper
    plt.figure(figsize=(12, 8))

    fs = 13  # fontsize
    matplotlib.rcParams["font.size"] = fs

    ax0 = plt.subplot2grid((2, 2), (0, 0), rowspan=2)
    ax1 = plt.subplot2grid((2, 2), (0, 1))
    ax2 = plt.subplot2grid((2, 2), (1, 1))

    # Recovered Models
    sigma_re = np.repeat(np.exp(mopt_re), 2, axis=0)
    sigma_sky = np.repeat(np.exp(mopt_sky), 2, axis=0)
    z = np.repeat(mesh.cell_centers_z[active][1:], 2, axis=0)
    z = np.r_[mesh.cell_centers_z[active][0], z, mesh.cell_centers_z[active][-1]]

    ax0.semilogx(sigma_re, z, "k", lw=2, label="RESOLVE")
    ax0.semilogx(sigma_sky, z, "b", lw=2, label="SkyTEM")
    ax0.set_ylim(-50, 0)
    # ax0.set_xlim(5e-4, 1e2)
    ax0.grid(True)
    ax0.set_ylabel("Depth (m)")
    ax0.set_xlabel("Conducivity (S/m)")
    ax0.legend(loc=3)
    ax0.set_title("(a) Recovered Models")

    # RESOLVE Data
    ax1.loglog(
        frequency_cp, dobs_re.reshape((5, 2))[:, 0] / bp * 1e6, "k-", label="Obs (real)"
    )
    ax1.loglog(
        frequency_cp,
        dobs_re.reshape((5, 2))[:, 1] / bp * 1e6,
        "k--",
        label="Obs (imag)",
    )
    ax1.loglog(
        frequency_cp,
        dpred_re.reshape((5, 2))[:, 0] / bp * 1e6,
        "k+",
        ms=10,
        markeredgewidth=2.0,
        label="Pred (real)",
    )
    ax1.loglog(
        frequency_cp,
        dpred_re.reshape((5, 2))[:, 1] / bp * 1e6,
        "ko",
        ms=6,
        markeredgecolor="k",
        markeredgewidth=0.5,
        label="Pred (imag)",
    )
    ax1.set_title("(b) RESOLVE")
    ax1.set_xlabel("Frequency (Hz)")
    ax1.set_ylabel("Bz (ppm)")
    ax1.grid(True)
    ax1.legend(loc=3, fontsize=11)

    # SkyTEM data
    ax2.loglog(times_off[3:] * 1e6, dobs_sky / area, "b-", label="Obs")
    ax2.loglog(
        times_off[3:] * 1e6,
        -dpred_sky / area,
        "bo",
        ms=4,
        markeredgecolor="k",
        markeredgewidth=0.5,
        label="Pred",
    )
    ax2.set_xlim(times_off.min() * 1e6 * 1.2, times_off.max() * 1e6 * 1.1)

    ax2.set_xlabel(r"Time ($\mu s$)")
    ax2.set_ylabel("dBz / dt (V/A-m$^4$)")
    ax2.set_title("(c) SkyTEM High-moment")
    ax2.grid(True)
    ax2.legend(loc=3)

    a3 = plt.axes([0.86, 0.33, 0.1, 0.09], facecolor=[0.8, 0.8, 0.8, 0.6])
    a3.plot(prob.times * 1e6, wave, "k-")
    a3.plot(
        rx.times * 1e6, np.zeros_like(rx.times), "k|", markeredgewidth=1, markersize=12
    )
    a3.set_xlim([prob.times.min() * 1e6 * 0.75, prob.times.max() * 1e6 * 1.1])
    a3.set_title("(d) Waveform", fontsize=11)
    a3.set_xticks([prob.times.min() * 1e6, t0 * 1e6, prob.times.max() * 1e6])
    a3.set_yticks([])
    # a3.set_xticklabels(['0', '2e4'])
    a3.set_xticklabels(["-1e4", "0", "1e4"])

    plt.tight_layout()

    if saveFig:
        plt.savefig("booky1D_time_freq.png", dpi=600)

    if plotIt:
        plt.show()

    resolve.close()
    skytem.close()
    if cleanup:
        print(os.path.split(directory)[:-1])
        os.remove(
            os.path.sep.join(directory.split()[:-1] + ["._bookpurnong_inversion"])
        )
        os.remove(downloads)
        shutil.rmtree(directory)


if __name__ == "__main__":
    run(plotIt=True, saveFig=False, cleanup=True)

Total running time of the script: ( 0 minutes 23.001 seconds)

Estimated memory usage: 24 MB

Gallery generated by Sphinx-Gallery