SimPEG.maps.IdentityMap.deriv#
- IdentityMap.deriv(m, v=None)[source]#
- Derivative of the mapping with respect to the input parameters. - Parameters:
- m(nP)numpy.ndarray
- A vector representing a set of model parameters 
- v(nP)numpy.ndarray
- If not - None, the method returns the derivative times the vector v
 
- m(
- Returns:
- scipy.sparse.csr_matrixor- numpy.ndarray
- Derivative of the mapping with respect to the model parameters. For an identity mapping, this is just a sparse identity matrix. If the input argument v is not - None, the method returns the derivative times the vector v; which in this case is just v.
 
 - Notes - Let \(\mathbf{m}\) be a set of model parameters and let \(\mathbf{I}\) denote the identity map. Where the identity mapping acting on the model parameters can be expressed as: \[\mathbf{u} = \mathbf{I m},\]- the deriv method returns the derivative of \(\mathbf{u}\) with respect to the model parameters; i.e.: \[\frac{\partial \mathbf{u}}{\partial \mathbf{m}} = \mathbf{I}\]- For the Identity map deriv simply returns a sparse identity matrix.