SimPEG.maps.SurjectUnits.deriv#
- SurjectUnits.deriv(m, v=None)[source]#
- Derivative of the mapping with respect to the input parameters. - Let \(\mathbf{m}\) be a set of model parameters. The surjective mapping can be defined as a sparse projection matrix \(\mathbf{P}\). Therefore we can define the surjective mapping acting on the model parameters as: \[\mathbf{u} = \mathbf{P m},\]- the deriv method returns the derivative of \(\mathbf{u}\) with respect to the model parameters; i.e.: \[\frac{\partial \mathbf{u}}{\partial \mathbf{m}} = \mathbf{P}\]- Note that in this case, deriv simply returns a sparse projection matrix. - Parameters:
- m(nP)numpy.ndarray
- A vector representing a set of model parameters 
- v(nP)numpy.ndarray
- If not - None, the method returns the derivative times the vector v
 
- m(
- Returns:
- scipy.sparse.csr_matrix
- Derivative of the mapping with respect to the model parameters. If the input argument v is not - None, the method returns the derivative times the vector v.