simpeg.maps.ParametricPolyMap.deriv#
- ParametricPolyMap.deriv(m, v=None)[source]#
Derivative of the mapping with respect to the model.
For a model \(\mathbf{m} = [\sigma_1, \sigma_2, \mathbf{c}]\), the derivative of the mapping with respect to the model parameters is a
numpy.ndarray
of shape (mesh.nC, nP) of the form:\[\frac{\partial \mathbf{u}}{\partial \mathbf{m}} = \Bigg [ \frac{\partial \mathbf{u}}{\partial \sigma_0} \;\; \Bigg [ \frac{\partial \mathbf{u}}{\partial \sigma_1} \;\; \Bigg [ \frac{\partial \mathbf{u}}{\partial c_0} \;\; \Bigg [ \frac{\partial \mathbf{u}}{\partial c_1} \;\; \cdots \;\; \Bigg [ \frac{\partial \mathbf{u}}{\partial c_N} \Bigg ]\]- Parameters:
- m(
nP
)numpy.ndarray
A vector representing a set of model parameters
- v(
nP
)numpy.ndarray
If not
None
, the method returns the derivative times the vector v
- m(
- Returns:
scipy.sparse.csr_matrix
Derivative of the mapping with respect to the model parameters. If the input argument v is not
None
, the method returns the derivative times the vector v.