SimPEG.electromagnetics.frequency_domain.Simulation3DMagneticField#
- class SimPEG.electromagnetics.frequency_domain.Simulation3DMagneticField(mesh, survey=None, forward_only=False, **kwargs)[source]#
- Bases: - SimPEG.electromagnetics.frequency_domain.simulation.BaseFDEMSimulation- We eliminate \(\mathbf{j}\) using \[\mathbf{j} = \mathbf{C} \mathbf{h} - \mathbf{s_e}\]- and solve for \(\mathbf{h}\) using \[\left(\mathbf{C}^{\top} \mathbf{M_{\rho}^f} \mathbf{C} + i \omega \mathbf{M_{\mu}^e}\right) \mathbf{h} = \mathbf{M^e} \mathbf{s_m} + \mathbf{C}^{\top} \mathbf{M_{\rho}^f} \mathbf{s_e}\]- Parameters
- mesh (discretize.base.BaseMesh) – mesh 
 - Methods - fieldsPair- alias of - SimPEG.electromagnetics.frequency_domain.fields.Fields3DMagneticField- getA(freq)- System matrix - getADeriv_rho(freq, u, v[, adjoint])- Product of the derivative of our system matrix with respect to the model and a vector - getRHS(freq)- Right hand side for the system - getRHSDeriv(freq, src, v[, adjoint])- Derivative of the right hand side with respect to the model - getADeriv - getADeriv_mu 
 
