SimPEG.electromagnetics.frequency_domain.simulation.BaseFDEMSimulation#

class SimPEG.electromagnetics.frequency_domain.simulation.BaseFDEMSimulation(mesh, survey=None, forward_only=False, permittivity=None, **kwargs)[source]#

Bases: BaseEMSimulation

We start by looking at Maxwell’s equations in the electric field (\(\mathbf{e}\)) and the magnetic flux density (\(\mathbf{b}\))

\[\mathbf{C} \mathbf{e} + i \omega \mathbf{b} = \mathbf{s_m} {\mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^f} \mathbf{b} - \mathbf{M_{\sigma}^e} \mathbf{e} = \mathbf{s_e}}\]

if using the E-B formulation (Simulation3DElectricField or Simulation3DMagneticFluxDensity). Note that in this case, \(\mathbf{s_e}\) is an integrated quantity.

If we write Maxwell’s equations in terms of \(\mathbf{h}\) and current density \(\mathbf{j}\).

\[\mathbf{C}^{\top} \mathbf{M_{\rho}^f} \mathbf{j} + i \omega \mathbf{M_{\mu}^e} \mathbf{h} = \mathbf{s_m} \mathbf{C} \mathbf{h} - \mathbf{j} = \mathbf{s_e}\]

if using the H-J formulation (Simulation3DCurrentDensity or Simulation3DMagneticField). Note that here, \(\mathbf{s_m}\) is an integrated quantity.

The problem performs the elimination so that we are solving the system for \(mathbf{e}\), \(mathbf{b}\), \(mathbf{j}\) or \(mathbf{h}\).

Attributes

forward_only

If True, A-inverse not stored at each frequency in forward simulation.

permittivity

Dielectric permittivity (F/m)

survey

The simulations survey.

Methods

Jtvec(m, v[, f])

Sensitivity transpose times a vector

Jvec(m, v[, f])

Sensitivity times a vector.

fields([m])

Solve the forward problem for the fields.

fieldsPair

alias of FieldsFDEM

getSourceTerm(freq)

Evaluates the sources for a given frequency and puts them in matrix form

Galleries and Tutorials using SimPEG.electromagnetics.frequency_domain.simulation.BaseFDEMSimulation#

2D inversion of Loop-Loop EM Data

2D inversion of Loop-Loop EM Data

MT: 3D: Forward

MT: 3D: Forward

Heagy et al., 2017 1D RESOLVE and SkyTEM Bookpurnong Inversions

Heagy et al., 2017 1D RESOLVE and SkyTEM Bookpurnong Inversions

Heagy et al., 2017 1D RESOLVE Bookpurnong Inversion

Heagy et al., 2017 1D RESOLVE Bookpurnong Inversion

Heagy et al., 2017 Casing Example

Heagy et al., 2017 Casing Example

Heagy et al., 2017 1D FDEM and TDEM inversions

Heagy et al., 2017 1D FDEM and TDEM inversions

EM: Schenkel and Morrison Casing Model

EM: Schenkel and Morrison Casing Model

3D Forward Simulation on a Cylindrical Mesh

3D Forward Simulation on a Cylindrical Mesh

3D Forward Simulation on a Tree Mesh

3D Forward Simulation on a Tree Mesh