SimPEG.electromagnetics.time_domain.Simulation3DElectricField#

class SimPEG.electromagnetics.time_domain.Simulation3DElectricField(mesh, survey=None, dt_threshold=1e-08, **kwargs)[source]#

Bases: BaseTDEMSimulation

Solve the EB-formulation of Maxwell’s equations for the electric field, e.

Starting with

×e+bt=sm ×μ1bσe=se

we eliminate bt using

bt=×e+sm

taking the time-derivative of Ampere’s law, we see

t(×μ1bσe)=set ×μ1btσet=set

which gives us

×μ1×e+σet=×μ1sm+set

Methods

Fields_Derivs

alias of FieldsDerivativesEB

Jtvec(m, v[, f])

Jvec computes the adjoint of the sensitivity times a vector

fieldsPair

alias of Fields3DElectricField

getAdiag(tInd)

Diagonal of the system matrix at a given time index

getAdiagDeriv(tInd, u, v[, adjoint])

Deriv of ADiag with respect to electrical conductivity

getAsubdiag(tInd)

Matrix below the diagonal

getAsubdiagDeriv(tInd, u, v[, adjoint])

Derivative of the matrix below the diagonal with respect to electrical conductivity

getRHS(tInd)

right hand side

getAdc

getAdcDeriv

getRHSDeriv

Galleries and Tutorials using SimPEG.electromagnetics.time_domain.Simulation3DElectricField#

Time-domain CSEM for a resistive cube in a deep marine setting

Time-domain CSEM for a resistive cube in a deep marine setting

EM: TDEM: 1D: Inversion

EM: TDEM: 1D: Inversion

Heagy et al., 2017 1D RESOLVE and SkyTEM Bookpurnong Inversions

Heagy et al., 2017 1D RESOLVE and SkyTEM Bookpurnong Inversions