SimPEG.electromagnetics.time_domain.Simulation3DMagneticFluxDensity#

class SimPEG.electromagnetics.time_domain.Simulation3DMagneticFluxDensity(mesh, survey=None, dt_threshold=1e-08, **kwargs)[source]#

Bases: BaseTDEMSimulation

Starting from the quasi-static E-B formulation of Maxwell’s equations (semi-discretized)

Ce+bt=smCMμ1fbMσee=se

where se is an integrated quantity, we eliminate e using

e=Mσe1CMμ1fbMσe1se

to obtain a second order semi-discretized system in b

CMσe1CMμ1fb+bt=CMσe1se+sm

and moving everything except the time derivative to the rhs gives

bt=CMσe1CMμ1fb+CMσe1se+sm

For the time discretization, we use backward euler. To solve for the n+1 th time step, we have

bn+1bndt=CMσe1CMμ1fbn+1+CMσe1sen+1+smn+1

re-arranging to put bn+1 on the left hand side gives

(I+dtCMσe1CMμ1f)bn+1=bn+dt(CMσe1sen+1+smn+1)

Methods

Fields_Derivs

alias of FieldsDerivativesEB

fieldsPair

alias of Fields3DMagneticFluxDensity

getAdiag(tInd)

System matrix at a given time index

getAdiagDeriv(tInd, u, v[, adjoint])

Derivative of ADiag

getAsubdiag(tInd)

Matrix below the diagonal

getRHS(tInd)

Assemble the RHS

getRHSDeriv(tInd, src, v[, adjoint])

Derivative of the RHS

getAsubdiagDeriv

Galleries and Tutorials using SimPEG.electromagnetics.time_domain.Simulation3DMagneticFluxDensity#

EM: TDEM: Permeable Target, Inductive Source

EM: TDEM: Permeable Target, Inductive Source

EM: TDEM: 1D: Inversion with VTEM waveform

EM: TDEM: 1D: Inversion with VTEM waveform

Heagy et al., 2017 1D FDEM and TDEM inversions

Heagy et al., 2017 1D FDEM and TDEM inversions

3D Forward Simulation for Transient Response on a Cylindrical Mesh

3D Forward Simulation for Transient Response on a Cylindrical Mesh

3D Forward Simulation with User-Defined Waveforms

3D Forward Simulation with User-Defined Waveforms

Forward Simulation Including Inductive Response

Forward Simulation Including Inductive Response