simpeg.electromagnetics.frequency_domain.sources.MagDipole#
- class simpeg.electromagnetics.frequency_domain.sources.MagDipole(receiver_list, frequency, location=None, moment=1.0, orientation='z', mu=1.25663706127e-06, **kwargs)[source]#
- Bases: - BaseFDEMSrc- Point magnetic dipole source calculated by taking the curl of a magnetic vector potential. By taking the discrete curl, we ensure that the magnetic flux density is divergence free (no magnetic monopoles!). - This approach uses a primary-secondary in frequency. Here we show the derivation for E-B formulation noting that similar steps are followed for the H-J formulation. \[\begin{split}\mathbf{C} \mathbf{e} + i \omega \mathbf{b} = \mathbf{s_m} \\ {\mathbf{C}^T \mathbf{M_{\mu^{-1}}^f} \mathbf{b} - \mathbf{M_{\sigma}^e} \mathbf{e} = \mathbf{s_e}}\end{split}\]- We split up the fields and \(\mu^{-1}\) into primary (\(\mathbf{P}\)) and secondary (\(\mathbf{S}\)) components - \(\mathbf{e} = \mathbf{e^P} + \mathbf{e^S}\) 
- \(\mathbf{b} = \mathbf{b^P} + \mathbf{b^S}\) 
- \(\boldsymbol{\mu}^{\mathbf{-1}} = \boldsymbol{\mu}^{\mathbf{-1}^\mathbf{P}} + \boldsymbol{\mu}^{\mathbf{-1}^\mathbf{S}}\) 
 - and define a zero-frequency primary simulation, noting that the source is generated by a divergence free electric current \[\begin{split}\mathbf{C} \mathbf{e^P} = \mathbf{s_m^P} = 0 \\ {\mathbf{C}^T \mathbf{{M_{\mu^{-1}}^f}^P} \mathbf{b^P} - \mathbf{M_{\sigma}^e} \mathbf{e^P} = \mathbf{M^e} \mathbf{s_e^P}}\end{split}\]- Since \(\mathbf{e^P}\) is curl-free, divergence-free, we assume that there is no constant field background, the \(\mathbf{e^P} = 0\), so our primary problem is \[\begin{split}\mathbf{e^P} = 0 \\ {\mathbf{C}^T \mathbf{{M_{\mu^{-1}}^f}^P} \mathbf{b^P} = \mathbf{s_e^P}}\end{split}\]- Our secondary problem is then \[\begin{split}\mathbf{C} \mathbf{e^S} + i \omega \mathbf{b^S} = - i \omega \mathbf{b^P} \\ {\mathbf{C}^T \mathbf{M_{\mu^{-1}}^f} \mathbf{b^S} - \mathbf{M_{\sigma}^e} \mathbf{e^S} = -\mathbf{C}^T \mathbf{{M_{\mu^{-1}}^f}^S} \mathbf{b^P}}\end{split}\]- To obtain $mathbf{b^P}$, we compute it by taking the curl of the vector potential due to a point dipole. This is provided by - geoana.em.static.MagneticDipoleWholeSpace.vector_potential(). Specifically,\[\vec{B}^P = \nabla \times \vec{A}\]- Parameters:
- receiver_listlistofsimpeg.electromagnetics.frequency_domain.receivers.BaseRx
- A list of FDEM receivers 
- frequencyfloat
- Source frequency 
- location(dim)numpy.ndarray, default:numpy.r_[0., 0., 0.]
- Source location. 
- momentfloat
- Magnetic dipole moment amplitude 
- orientation{‘z’, x’, ‘y’} or(dim)numpy.ndarray
- Orientation of the dipole. 
- mufloat
- Background magnetic permeability 
 
- receiver_list
 - Attributes - Source frequency - Integrated source term - Location of the dipole - Amplitude of the dipole moment of the magnetic dipole (\(A/m^2\)) - Magnetic permeability in H/m - Number of data associated with the source. - Orientation of the dipole as a normalized vector - List of receivers associated with the source - Universal unique identifier - Vector number of data. - Methods - bPrimary(simulation)- Compute primary magnetic flux density. - bPrimaryDeriv(simulation, v[, adjoint])- Compute derivative of primary magnetic flux density times a vector - ePrimary(simulation)- Compute primary electric field - ePrimaryDeriv(simulation, v[, adjoint])- Compute derivative of primary electric field times a vector - eval(simulation)- Return magnetic and electric source terms - evalDeriv(simulation[, v, adjoint])- Return derivative of the magnetic and electric source terms with respect to the model. - get_receiver_indices(receivers)- Get indices for a subset of receivers within the source's receivers list. - hPrimary(simulation)- Compute primary magnetic field. - hPrimaryDeriv(simulation, v[, adjoint])- Compute derivative of primary magnetic field times a vector - jPrimary(simulation)- Compute primary current density - jPrimaryDeriv(simulation, v[, adjoint])- Compute derivative of primary current density times a vector - s_e(simulation)- Electric source term (s_e) - s_eDeriv(simulation, v[, adjoint])- Derivative of electric source term with respect to the inversion model - s_m(simulation)- Magnetic source term (s_m) - s_mDeriv(simulation, v[, adjoint])- Derivative of magnetic source term with respect to the inversion model 
Galleries and Tutorials using simpeg.electromagnetics.frequency_domain.sources.MagDipole#
 
Heagy et al., 2017 1D RESOLVE and SkyTEM Bookpurnong Inversions
 
Heagy et al., 2017 1D RESOLVE Bookpurnong Inversion
 
1D Forward Simulation for a Susceptible and Chargeable Earth
 
     
 
 
 
 
