simpeg.electromagnetics.natural_source.Simulation3DPrimarySecondary#
- class simpeg.electromagnetics.natural_source.Simulation3DPrimarySecondary(mesh, survey=None, sigmaPrimary=None, **kwargs)[source]#
Bases:
Simulation3DElectricField
A NSEM problem solving a e formulation and a primary/secondary fields decomposition.
By eliminating the magnetic flux density using
\[\mathbf{b} = \frac{1}{i \omega} \left(-\mathbf{C} \mathbf{e} \right)\]we can write Maxwell’s equations as a second order system in \(\mathbf{e}\) only:
\[\left[ \mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^f} \mathbf{C} + i \omega \mathbf{M_{\sigma}^e} \right] \mathbf{e}_{s} = i \omega \mathbf{M_{\sigma_{p}}^e} \mathbf{e}_{p}\]which we solve for \(\mathbf{e_s}\). The total field \(\mathbf{e} = \mathbf{e_p} + \mathbf{e_s}\).
The primary field is estimated from a background model (commonly as a 1D model).
Attributes
Cell center inner product matrix.
Cell center property inner product matrix.
Cell center property inner product inverse matrix.
Cell center property inner product matrix.
Cell center property inner product inverse matrix.
Cell center property inner product matrix.
Cell center property inner product inverse matrix.
Cell center property inner product matrix.
Cell center property inner product inverse matrix.
Edge inner product matrix.
Edge inner product inverse matrix.
Edge property inner product matrix.
Edge property inner product inverse matrix.
Edge property inner product matrix.
Edge property inner product inverse matrix.
Edge property inner product matrix.
Edge property inner product inverse matrix.
Edge property inner product matrix.
Edge property inner product inverse matrix.
Face inner product matrix.
Face inner product inverse matrix.
Face property inner product matrix.
Face property inner product inverse matrix.
Face property inner product matrix.
Face property inner product inverse matrix.
Face property inner product matrix.
Face property inner product inverse matrix.
Face property inner product matrix.
Face property inner product inverse matrix.
Node inner product matrix.
Node inner product inverse matrix.
Node property inner product matrix.
Node property inner product inverse matrix.
Node property inner product matrix.
Node property inner product inverse matrix.
Node property inner product matrix.
Node property inner product inverse matrix.
Node property inner product matrix.
Node property inner product inverse matrix.
A list of solver objects to clean when the model is updated
SimPEG
Counter
object to store iterations and run-times.List of model-dependent attributes to clean upon model update.
Whether to store the factorizations of the inverses of the system matrices.
Mesh for the simulation.
The inversion model.
Magnetic permeability (h/m) physical property model.
Derivative of Magnetic Permeability (H/m) wrt the model.
Mapping of the inversion model to Magnetic Permeability (H/m).
Inverse magnetic permeability (m/h) physical property model.
Derivative of Inverse Magnetic Permeability (m/H) wrt the model.
Mapping of the inversion model to Inverse Magnetic Permeability (m/H).
True if a model is necessary
Dielectric permittivity (F/m)
Electrical resistivity (ohm m) physical property model.
Derivative of Electrical resistivity (Ohm m) wrt the model.
Mapping of the inversion model to Electrical resistivity (Ohm m).
Path to directory where sensitivity file is stored.
Electrical conductivity (s/m) physical property model.
Derivative of Electrical conductivity (S/m) wrt the model.
Mapping of the inversion model to Electrical conductivity (S/m).
A background model, use for the calculation of the primary fields.
Numerical solver used in the forward simulation.
Solver-specific parameters.
Whether to store inner product matrices
Whether to compute and store the sensitivity matrix.
The FDEM survey object.
Verbose progress printout.
MccI
Vol
Methods
Jtvec
(m, v[, f])Compute the adjoint sensitivity matrix times a vector.
Jtvec_approx
(m, v[, f])Approximation of the Jacobian transpose times a vector for the model provided.
Jvec
(m, v[, f])Compute the sensitivity matrix times a vector.
Jvec_approx
(m, v[, f])Approximation of the Jacobian times a vector for the model provided.
MccMuDeriv
(u[, v, adjoint])Derivative of MccProperty with respect to the model.
MccMuIDeriv
(u[, v, adjoint])Derivative of MccPropertyI with respect to the model.
MccMuiDeriv
(u[, v, adjoint])Derivative of MccProperty with respect to the model.
MccMuiIDeriv
(u[, v, adjoint])Derivative of MccPropertyI with respect to the model.
MccRhoDeriv
(u[, v, adjoint])Derivative of MccProperty with respect to the model.
MccRhoIDeriv
(u[, v, adjoint])Derivative of MccPropertyI with respect to the model.
MccSigmaDeriv
(u[, v, adjoint])Derivative of MccProperty with respect to the model.
MccSigmaIDeriv
(u[, v, adjoint])Derivative of MccPropertyI with respect to the model.
MeMuDeriv
(u[, v, adjoint])Derivative of MeProperty with respect to the model.
MeMuIDeriv
(u[, v, adjoint])Derivative of MePropertyI with respect to the model.
MeMuiDeriv
(u[, v, adjoint])Derivative of MeProperty with respect to the model.
MeMuiIDeriv
(u[, v, adjoint])Derivative of MePropertyI with respect to the model.
MeRhoDeriv
(u[, v, adjoint])Derivative of MeProperty with respect to the model.
MeRhoIDeriv
(u[, v, adjoint])Derivative of MePropertyI with respect to the model.
MeSigmaDeriv
(u[, v, adjoint])Derivative of MeProperty with respect to the model.
MeSigmaIDeriv
(u[, v, adjoint])Derivative of MePropertyI with respect to the model.
MfMuDeriv
(u[, v, adjoint])Derivative of MfProperty with respect to the model.
MfMuIDeriv
(u[, v, adjoint])I Derivative of MfPropertyI with respect to the model.
MfMuiDeriv
(u[, v, adjoint])Derivative of MfProperty with respect to the model.
MfMuiIDeriv
(u[, v, adjoint])I Derivative of MfPropertyI with respect to the model.
MfRhoDeriv
(u[, v, adjoint])Derivative of MfProperty with respect to the model.
MfRhoIDeriv
(u[, v, adjoint])I Derivative of MfPropertyI with respect to the model.
MfSigmaDeriv
(u[, v, adjoint])Derivative of MfProperty with respect to the model.
MfSigmaIDeriv
(u[, v, adjoint])I Derivative of MfPropertyI with respect to the model.
MnMuDeriv
(u[, v, adjoint])Derivative of MnProperty with respect to the model.
MnMuIDeriv
(u[, v, adjoint])Derivative of MnPropertyI with respect to the model.
MnMuiDeriv
(u[, v, adjoint])Derivative of MnProperty with respect to the model.
MnMuiIDeriv
(u[, v, adjoint])Derivative of MnPropertyI with respect to the model.
MnRhoDeriv
(u[, v, adjoint])Derivative of MnProperty with respect to the model.
MnRhoIDeriv
(u[, v, adjoint])Derivative of MnPropertyI with respect to the model.
MnSigmaDeriv
(u[, v, adjoint])Derivative of MnProperty with respect to the model.
MnSigmaIDeriv
(u[, v, adjoint])Derivative of MnPropertyI with respect to the model.
dpred
([m, f])Predicted data for the model provided.
fields
([m])Compute and return the fields for the model provided.
fieldsPair
alias of
Fields3DElectricField
getA
(freq)System matrix for the frequency provided.
getADeriv
(freq, u, v[, adjoint])Derivative operation for the system matrix times a vector.
getADeriv_mui
(freq, u, v[, adjoint])Inverse permeability derivative operation for the system matrix times a vector.
getADeriv_sigma
(freq, u, v[, adjoint])Conductivity derivative operation for the system matrix times a vector.
getJ
(m[, f])Generate the full sensitivity matrix.
getJtJdiag
(m[, W, f])Return the diagonal of \(\mathbf{J^T J}\).
getRHS
(freq)Right-hand sides for the given frequency.
getRHSDeriv
(freq, src, v[, adjoint])Derivative of the right-hand side times a vector for a given source and frequency.
getSourceTerm
(freq)Returns the discrete source terms for the frequency provided.
make_synthetic_data
(m[, relative_error, ...])Make synthetic data for the model and Gaussian noise provided.
residual
(m, dobs[, f])The data residual.