simpeg.electromagnetics.time_domain.simulation.BaseTDEMSimulation#
- class simpeg.electromagnetics.time_domain.simulation.BaseTDEMSimulation(mesh, survey=None, dt_threshold=1e-08, **kwargs)[source]#
- Bases: - BaseTimeSimulation,- BaseEMSimulation- Base class for quasi-static TDEM simulation with finite volume. - This class is used to define properties and methods necessary for solving 3D time-domain EM problems. In the quasi-static regime, we ignore electric displacement, and Maxwell’s equations are expressed as: \[\begin{split}\begin{align} \nabla \times \vec{e} + \frac{\partial \vec{b}}{\partial t} &= -\frac{\partial \vec{s}_m}{\partial t} \\ \nabla \times \vec{h} - \vec{j} &= \vec{s}_e \end{align}\end{split}\]- where the constitutive relations between fields and fluxes are given by: - \(\vec{j} = \sigma \vec{e}\) 
- \(\vec{b} = \mu \vec{h}\) 
 - and: - \(\vec{s}_m\) represents a magnetic source term 
- \(\vec{s}_e\) represents a current source term 
 - Child classes of - BaseTDEMSimulationsolve the above expression numerically for various cases using mimetic finite volume and backward Euler time discretization.- Parameters:
- meshdiscretize.base.BaseMesh
- The mesh. 
- surveytime_domain.survey.Survey
- The time-domain EM survey. 
- dt_thresholdfloat
- Threshold used when determining the unique time-step lengths. 
 
- mesh
 - Attributes - Inverse of the factored system matrix for the DC resistivity problem. - Cell center inner product matrix. - Cell center property inner product matrix. - Cell center property inner product inverse matrix. - Cell center property inner product matrix. - Cell center property inner product inverse matrix. - Cell center property inner product matrix. - Cell center property inner product inverse matrix. - Cell center property inner product matrix. - Cell center property inner product inverse matrix. - Edge inner product matrix. - Edge inner product inverse matrix. - Edge property inner product matrix. - Edge property inner product inverse matrix. - Edge property inner product matrix. - Edge property inner product inverse matrix. - Edge property inner product matrix. - Edge property inner product inverse matrix. - Edge property inner product matrix. - Edge property inner product inverse matrix. - Face inner product matrix. - Face inner product inverse matrix. - Face property inner product matrix. - Face property inner product inverse matrix. - Face property inner product matrix. - Face property inner product inverse matrix. - Face property inner product matrix. - Face property inner product inverse matrix. - Face property inner product matrix. - Face property inner product inverse matrix. - Node inner product matrix. - Node inner product inverse matrix. - Node property inner product matrix. - Node property inner product inverse matrix. - Node property inner product matrix. - Node property inner product inverse matrix. - Node property inner product matrix. - Node property inner product inverse matrix. - Node property inner product matrix. - Node property inner product inverse matrix. - A list of solver objects to clean when the model is updated - SimPEG - Counterobject to store iterations and run-times.- HasModel.deleteTheseOnModelUpdate has been deprecated. - Threshold used when determining the unique time-step lengths. - Mesh for the simulation. - The inversion model. - Magnetic permeability (h/m) physical property model. - Derivative of Magnetic Permeability (H/m) wrt the model. - Mapping of the inversion model to Magnetic Permeability (H/m). - Inverse magnetic permeability (m/h) physical property model. - Derivative of Inverse Magnetic Permeability (m/H) wrt the model. - Mapping of the inversion model to Inverse Magnetic Permeability (m/H). - Total number of time steps. - True if a model is necessary - Electrical resistivity (ohm m) physical property model. - Derivative of Electrical resistivity (Ohm m) wrt the model. - Mapping of the inversion model to Electrical resistivity (Ohm m). - Path to directory where sensitivity file is stored. - Electrical conductivity (s/m) physical property model. - Derivative of Electrical conductivity (S/m) wrt the model. - Mapping of the inversion model to Electrical conductivity (S/m). - Numerical solver used in the forward simulation. - Solver-specific parameters. - Whether to store inner product matrices - The TDEM survey object. - Initial time, in seconds, for the time-dependent forward simulation. - Time mesh for easy interpolation to observation times. - Time step lengths, in seconds, for the time domain simulation. - Evaluation times. - Verbose progress printout. - MccI - Vol - Methods - Jtvec(m, v[, f])- Compute the adjoint sensitivity matrix times a vector. - Jtvec_approx(m, v[, f])- Approximation of the Jacobian transpose times a vector for the model provided. - Jvec(m, v[, f])- Compute the sensitivity matrix times a vector. - Jvec_approx(m, v[, f])- Approximation of the Jacobian times a vector for the model provided. - MccMuDeriv(u[, v, adjoint])- Derivative of MccProperty with respect to the model. - MccMuIDeriv(u[, v, adjoint])- Derivative of MccPropertyI with respect to the model. - MccMuiDeriv(u[, v, adjoint])- Derivative of MccProperty with respect to the model. - MccMuiIDeriv(u[, v, adjoint])- Derivative of MccPropertyI with respect to the model. - MccRhoDeriv(u[, v, adjoint])- Derivative of MccProperty with respect to the model. - MccRhoIDeriv(u[, v, adjoint])- Derivative of MccPropertyI with respect to the model. - MccSigmaDeriv(u[, v, adjoint])- Derivative of MccProperty with respect to the model. - MccSigmaIDeriv(u[, v, adjoint])- Derivative of MccPropertyI with respect to the model. - MeMuDeriv(u[, v, adjoint])- Derivative of MeProperty with respect to the model. - MeMuIDeriv(u[, v, adjoint])- Derivative of MePropertyI with respect to the model. - MeMuiDeriv(u[, v, adjoint])- Derivative of MeProperty with respect to the model. - MeMuiIDeriv(u[, v, adjoint])- Derivative of MePropertyI with respect to the model. - MeRhoDeriv(u[, v, adjoint])- Derivative of MeProperty with respect to the model. - MeRhoIDeriv(u[, v, adjoint])- Derivative of MePropertyI with respect to the model. - MeSigmaDeriv(u[, v, adjoint])- Derivative of MeProperty with respect to the model. - MeSigmaIDeriv(u[, v, adjoint])- Derivative of MePropertyI with respect to the model. - MfMuDeriv(u[, v, adjoint])- Derivative of MfProperty with respect to the model. - MfMuIDeriv(u[, v, adjoint])- I Derivative of MfPropertyI with respect to the model. - MfMuiDeriv(u[, v, adjoint])- Derivative of MfProperty with respect to the model. - MfMuiIDeriv(u[, v, adjoint])- I Derivative of MfPropertyI with respect to the model. - MfRhoDeriv(u[, v, adjoint])- Derivative of MfProperty with respect to the model. - MfRhoIDeriv(u[, v, adjoint])- I Derivative of MfPropertyI with respect to the model. - MfSigmaDeriv(u[, v, adjoint])- Derivative of MfProperty with respect to the model. - MfSigmaIDeriv(u[, v, adjoint])- I Derivative of MfPropertyI with respect to the model. - MnMuDeriv(u[, v, adjoint])- Derivative of MnProperty with respect to the model. - MnMuIDeriv(u[, v, adjoint])- Derivative of MnPropertyI with respect to the model. - MnMuiDeriv(u[, v, adjoint])- Derivative of MnProperty with respect to the model. - MnMuiIDeriv(u[, v, adjoint])- Derivative of MnPropertyI with respect to the model. - MnRhoDeriv(u[, v, adjoint])- Derivative of MnProperty with respect to the model. - MnRhoIDeriv(u[, v, adjoint])- Derivative of MnPropertyI with respect to the model. - MnSigmaDeriv(u[, v, adjoint])- Derivative of MnProperty with respect to the model. - MnSigmaIDeriv(u[, v, adjoint])- Derivative of MnPropertyI with respect to the model. - dpred([m, f])- Predicted data for the model provided. - fields(m)- Compute and return the fields for the model provided. - Returns the fields for all sources at the initial time. - getInitialFieldsDeriv(src, v[, adjoint, f])- Derivative of the initial fields with respect to the model for a given source. - getSourceTerm(tInd)- Return the discrete source terms for the time index provided. - make_synthetic_data(m[, relative_error, ...])- Make synthetic data for the model and Gaussian noise provided. - residual(m, dobs[, f])- The data residual. 
Galleries and Tutorials using simpeg.electromagnetics.time_domain.simulation.BaseTDEMSimulation#
 
Time-domain CSEM for a resistive cube in a deep marine setting
 
Heagy et al., 2017 1D RESOLVE and SkyTEM Bookpurnong Inversions
 
3D Forward Simulation for Transient Response on a Cylindrical Mesh
 
     
 
 
 
 
