SimPEG.electromagnetics.frequency_domain.simulation.BaseFDEMSimulation#
- class SimPEG.electromagnetics.frequency_domain.simulation.BaseFDEMSimulation(mesh, survey=None, forward_only=False, **kwargs)[source]#
Bases:
SimPEG.electromagnetics.base.BaseEMSimulation
We start by looking at Maxwell’s equations in the electric field \(\mathbf{e}\) and the magnetic flux density \(\mathbf{b}\)
\[\begin{split}\mathbf{C} \mathbf{e} + i \omega \mathbf{b} = \mathbf{s_m} \\ {\mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^f} \mathbf{b} - \mathbf{M_{\sigma}^e} \mathbf{e} = \mathbf{s_e}}\end{split}\]if using the E-B formulation (
Simulation3DElectricField
orSimulation3DMagneticFluxDensity
). Note that in this case, \(\mathbf{s_e}\) is an integrated quantity.If we write Maxwell’s equations in terms of \(\mathbf{h}\) and current density \(\mathbf{j}\)
\[\begin{split}\mathbf{C}^{\top} \mathbf{M_{\rho}^f} \mathbf{j} + i \omega \mathbf{M_{\mu}^e} \mathbf{h} = \mathbf{s_m} \\ \mathbf{C} \mathbf{h} - \mathbf{j} = \mathbf{s_e}\end{split}\]if using the H-J formulation (
Simulation3DCurrentDensity
orSimulation3DMagneticField
). Note that here, \(\mathbf{s_m}\) is an integrated quantity.The problem performs the elimination so that we are solving the system for \(\mathbf{e},\mathbf{b},\mathbf{j} \) or \(\mathbf{h}\)
Attributes
If True, A-inverse not stored at each frequency in forward simulation.
The simulations survey.
Methods
Jtvec
(m, v[, f])Sensitivity transpose times a vector
Jvec
(m, v[, f])Sensitivity times a vector.
fields
([m])Solve the forward problem for the fields.
fieldsPair
alias of
SimPEG.electromagnetics.frequency_domain.fields.FieldsFDEM
getSourceTerm
(freq)Evaluates the sources for a given frequency and puts them in matrix form
Galleries and Tutorials using SimPEG.electromagnetics.frequency_domain.simulation.BaseFDEMSimulation
#
2D inversion of Loop-Loop EM Data
Heagy et al., 2017 1D RESOLVE and SkyTEM Bookpurnong Inversions
Heagy et al., 2017 1D RESOLVE Bookpurnong Inversion
Heagy et al., 2017 Casing Example
Heagy et al., 2017 1D FDEM and TDEM inversions
EM: Schenkel and Morrison Casing Model
3D Forward Simulation on a Cylindrical Mesh
3D Forward Simulation on a Tree Mesh