SimPEG.maps.ParametricCircleMap#
- class SimPEG.maps.ParametricCircleMap(mesh, logSigma=True, slope=0.1)[source]#
- Bases: - SimPEG.maps.IdentityMap- Mapping for a parameterized circle. - Define the mapping from a parameterized model for a circle in a wholespace to all cells within a 2D mesh. For a circle within a wholespace, the model is defined by 5 parameters: the background physical property value (\(\sigma_0\)), the physical property value for the circle (\(\sigma_c\)), the x location \(x_0\) and y location \(y_0\) for center of the circle, and the circle’s radius (\(R\)). - Let \(\mathbf{m} = [\sigma_0, \sigma_1, x_0, y_0, R]\) be the set of model parameters the defines a circle within a wholespace. The mapping \(\mathbf{u}(\mathbf{m})\) from the parameterized model to all cells within a 2D mesh is given by: \[\mathbf{u}(\mathbf{m}) = \sigma_0 + (\sigma_1 - \sigma_0) \bigg [ \frac{1}{2} + \pi^{-1} \arctan \bigg ( a \big [ \sqrt{(\mathbf{x_c}-x_0)^2 + (\mathbf{y_c}-y_0)^2} - R \big ] \bigg ) \bigg ]\]- where \(\mathbf{x_c}\) and \(\mathbf{y_c}\) are vectors storing the x and y positions of all cell centers for the 2D mesh and \(a\) is a user-defined constant which defines the sharpness of boundary of the circular structure. - Parameters
- meshdiscretize.BaseMesh
- A 2D discretize mesh 
- logSigmabool
- If - True, parameters \(\sigma_0\) and \(\sigma_1\) represent the natural log of the physical property values for the background and circle, respectively.
- slopefloat
- A constant for defining the sharpness of the boundary between the circle and the wholespace. The sharpness increases as slope is increased. 
 
- mesh
 - Examples - Attributes - Whether the input needs to be transformed by an exponential - Number of parameters the mapping acts on; i.e. 5. - Sharpness of the boundary. - Methods - deriv(m[, v])- Derivative of the mapping with respect to the input parameters.