SimPEG.electromagnetics.time_domain.Simulation3DElectricField#
- class SimPEG.electromagnetics.time_domain.Simulation3DElectricField(mesh, survey=None, dt_threshold=1e-08, **kwargs)[source]#
- Bases: - SimPEG.electromagnetics.time_domain.simulation.BaseTDEMSimulation- Solve the EB-formulation of Maxwell’s equations for the electric field, e. - Starting with \[\nabla \times \mathbf{e} + \frac{\partial \mathbf{b}}{\partial t} = \mathbf{s_m} \ \nabla \times \mu^{-1} \mathbf{b} - \sigma \mathbf{e} = \mathbf{s_e}\]- we eliminate \(\frac{\partial b}{\partial t}\) using \[\frac{\partial \mathbf{b}}{\partial t} = - \nabla \times \mathbf{e} + \mathbf{s_m}\]- taking the time-derivative of Ampere’s law, we see \[\frac{\partial}{\partial t}\left( \nabla \times \mu^{-1} \mathbf{b} - \sigma \mathbf{e} \right) = \frac{\partial \mathbf{s_e}}{\partial t} \ \nabla \times \mu^{-1} \frac{\partial \mathbf{b}}{\partial t} - \sigma \frac{\partial\mathbf{e}}{\partial t} = \frac{\partial \mathbf{s_e}}{\partial t}\]- which gives us \[\nabla \times \mu^{-1} \nabla \times \mathbf{e} + \sigma \frac{\partial\mathbf{e}}{\partial t} = \nabla \times \mu^{-1} \mathbf{s_m} + \frac{\partial \mathbf{s_e}}{\partial t}\]- Methods - Fields_Derivs- alias of - SimPEG.electromagnetics.time_domain.fields.FieldsDerivativesEB- Jtvec(m, v[, f])- Jvec computes the adjoint of the sensitivity times a vector - fieldsPair- alias of - SimPEG.electromagnetics.time_domain.fields.Fields3DElectricField- getAdiag(tInd)- Diagonal of the system matrix at a given time index - getAdiagDeriv(tInd, u, v[, adjoint])- Deriv of ADiag with respect to electrical conductivity - getAsubdiag(tInd)- Matrix below the diagonal - getAsubdiagDeriv(tInd, u, v[, adjoint])- Derivative of the matrix below the diagonal with respect to electrical conductivity - getRHS(tInd)- right hand side - getAdc - getAdcDeriv - getRHSDeriv 
Galleries and Tutorials using SimPEG.electromagnetics.time_domain.Simulation3DElectricField#
 
Time-domain CSEM for a resistive cube in a deep marine setting
 
Heagy et al., 2017 1D RESOLVE and SkyTEM Bookpurnong Inversions
