SimPEG.electromagnetics.time_domain.Simulation3DMagneticFluxDensity#
- class SimPEG.electromagnetics.time_domain.Simulation3DMagneticFluxDensity(mesh, survey=None, dt_threshold=1e-08, **kwargs)[source]#
- Bases: - SimPEG.electromagnetics.time_domain.simulation.BaseTDEMSimulation- Starting from the quasi-static E-B formulation of Maxwell’s equations (semi-discretized) \[\begin{split}\mathbf{C} \mathbf{e} + \frac{\partial \mathbf{b}}{\partial t} = \mathbf{s_m} \\ \mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^f} \mathbf{b} - \mathbf{M_{\sigma}^e} \mathbf{e} = \mathbf{s_e}\end{split}\]- where \(\mathbf{s_e}\) is an integrated quantity, we eliminate \(\mathbf{e}\) using \[\mathbf{e} = \mathbf{M_{\sigma}^e}^{-1} \mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^f} \mathbf{b} - \mathbf{M_{\sigma}^e}^{-1} \mathbf{s_e}\]- to obtain a second order semi-discretized system in \(\mathbf{b}\) \[\mathbf{C} \mathbf{M_{\sigma}^e}^{-1} \mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^f} \mathbf{b} + \frac{\partial \mathbf{b}}{\partial t} = \mathbf{C} \mathbf{M_{\sigma}^e}^{-1} \mathbf{s_e} + \mathbf{s_m}\]- and moving everything except the time derivative to the rhs gives \[\frac{\partial \mathbf{b}}{\partial t} = -\mathbf{C} \mathbf{M_{\sigma}^e}^{-1} \mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^f} \mathbf{b} + \mathbf{C} \mathbf{M_{\sigma}^e}^{-1} \mathbf{s_e} + \mathbf{s_m}\]- For the time discretization, we use backward euler. To solve for the \(n+1\) th time step, we have \[\frac{\mathbf{b}^{n+1} - \mathbf{b}^{n}}{\mathbf{dt}} = -\mathbf{C} \mathbf{M_{\sigma}^e}^{-1} \mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^f} \mathbf{b}^{n+1} + \mathbf{C} \mathbf{M_{\sigma}^e}^{-1} \mathbf{s_e}^{n+1} + \mathbf{s_m}^{n+1}\]- re-arranging to put \(\mathbf{b}^{n+1}\) on the left hand side gives \[(\mathbf{I} + \mathbf{dt} \mathbf{C} \mathbf{M_{\sigma}^e}^{-1} \mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^f}) \mathbf{b}^{n+1} = \mathbf{b}^{n} + \mathbf{dt}(\mathbf{C} \mathbf{M_{\sigma}^e}^{-1} \mathbf{s_e}^{n+1} + \mathbf{s_m}^{n+1})\]- Methods - Fields_Derivs- alias of - SimPEG.electromagnetics.time_domain.fields.FieldsDerivativesEB- fieldsPair- alias of - SimPEG.electromagnetics.time_domain.fields.Fields3DMagneticFluxDensity- getAdiag(tInd)- System matrix at a given time index - getAdiagDeriv(tInd, u, v[, adjoint])- Derivative of ADiag - getAsubdiag(tInd)- Matrix below the diagonal - getRHS(tInd)- Assemble the RHS - getRHSDeriv(tInd, src, v[, adjoint])- Derivative of the RHS - getAsubdiagDeriv 
Galleries and Tutorials using SimPEG.electromagnetics.time_domain.Simulation3DMagneticFluxDensity#
 
3D Forward Simulation for Transient Response on a Cylindrical Mesh
 
 
 
 
