simpeg.electromagnetics.time_domain.Simulation3DElectricField.getRHSDeriv#
- Simulation3DElectricField.getRHSDeriv(tInd, src, v, adjoint=False)[source]#
- Derivative of the right-hand side times a vector for a given source and time index. - The right-hand side for a given source at time index k is constructed according to: \[\mathbf{q}_k = -\frac{1}{\Delta t_k} \big [ \mathbf{s}_{\mathbf{e}, k} - \mathbf{s}_{\mathbf{e}, k-1} \big ] - \frac{1}{\Delta t_k} \mathbf{C^T M_{f\frac{1}{\mu}} } \big [ \mathbf{s}_{\mathbf{m}, k} - \mathbf{s}_{\mathbf{m}, k-1} \big ]\]- where - \(\Delta t_k\) is the step length 
- \(\mathbf{C}\) is the discrete curl operator 
- \(\mathbf{s_m}\) and \(\mathbf{s_e}\) are the integrated magnetic and electric source terms, respectively 
- \(\mathbf{M_{f\frac{1}{\mu}}}\) is the inner-product matrices for inverse permeabilities projected to faces 
 - See the Notes section of the doc strings for - Simulation3DElectricFieldfor a full description of the formulation.- Where \(\mathbf{m}\) are the set of model parameters and \(\mathbf{v}\) is a vector, this method returns \[\frac{\partial \mathbf{q_k}}{\partial \mathbf{m}} \, \mathbf{v}\]- Or the adjoint operation \[\frac{\partial \mathbf{q_k}}{\partial \mathbf{m}}^T \, \mathbf{v}\]- Parameters:
- tIndint
- The time index; between - [0, n_steps].
- srctime_domain.sources.BaseTDEMSrc
- The TDEM source object. 
- vnumpy.ndarray
- The vector. (n_param,) for the standard operation. (n_edges,) for the adjoint operation. 
- adjointbool
- Whether to perform the adjoint operation. 
 
- tInd
- Returns:
- numpy.ndarray
- Derivative of the right-hand sides times a vector. (n_edges,) for the standard operation. (n_param,) for the adjoint operation. 
 
 
