SimPEG.electromagnetics.frequency_domain.Simulation3DCurrentDensity#

class SimPEG.electromagnetics.frequency_domain.Simulation3DCurrentDensity(mesh, survey=None, forward_only=False, **kwargs)[source]#

Bases: SimPEG.electromagnetics.frequency_domain.simulation.BaseFDEMSimulation

We eliminate \(mathbf{h}\) using

\[\mathbf{h} = \frac{1}{i \omega} \mathbf{M_{\mu}^e}^{-1} \left(-\mathbf{C}^{\top} \mathbf{M_{\rho}^f} \mathbf{j} + \mathbf{M^e} \mathbf{s_m} \right)\]

and solve for \(mathbf{j}\) using

\[\left(\mathbf{C} \mathbf{M_{\mu}^e}^{-1} \mathbf{C}^{\top} \mathbf{M_{\rho}^f} + i \omega\right)\mathbf{j} = \mathbf{C} \mathbf{M_{\mu}^e}^{-1} \mathbf{M^e} \mathbf{s_m} - i\omega\mathbf{s_e}\]

Note

This implementation does not yet work with full anisotropy!!

Parameters

mesh (discretize.base.BaseMesh) – mesh

Methods

fieldsPair

alias of SimPEG.electromagnetics.frequency_domain.fields.Fields3DCurrentDensity

getA(freq)

System matrix

getADeriv_rho(freq, u, v[, adjoint])

Product of the derivative of our system matrix with respect to the model and a vector

getRHS(freq)

Right hand side for the system

getRHSDeriv(freq, src, v[, adjoint])

Derivative of the right hand side with respect to the model

getADeriv

getADeriv_mu