SimPEG.electromagnetics.natural_source.Simulation1DPrimarySecondary#
- class SimPEG.electromagnetics.natural_source.Simulation1DPrimarySecondary(mesh, survey=None, sigmaPrimary=None, **kwargs)[source]#
- Bases: - SimPEG.electromagnetics.natural_source.simulation.Simulation1DElectricField- A NSEM problem solving a e formulation and primary/secondary fields decomposition. - By eliminating the magnetic flux density using \[\mathbf{b} = \frac{1}{i \omega} \left(-\mathbf{C} \mathbf{e} \right)\]- we can write Maxwell’s equations as a second order system in \(\mathbf{e}\) only: \[\left[ \mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^e } \mathbf{C} + i \omega \mathbf{M_{\sigma}^f} \right] \mathbf{e}_{s} = i \omega \mathbf{M_{\sigma_{s}}^f } \mathbf{e}_{p}\]- which we solve for \(\mathbf{e_s}\). The total field \(\mathbf{e} = \mathbf{e_p} + \mathbf{e_s}\). - The primary field is estimated from a background model (commonly half space ). - Attributes - A background model, use for the calculation of the primary fields. - Methods - fieldsPair- alias of - SimPEG.electromagnetics.natural_source.fields.Fields1DPrimarySecondary- getADeriv(freq, u, v[, adjoint])- The derivative of A wrt sigma - getRHS(freq)- Function to return the right hand side for the system. - getRHSDeriv(freq, src, v[, adjoint])- The derivative of the RHS wrt sigma