SimPEG.electromagnetics.natural_source.Simulation1DPrimarySecondary#

class SimPEG.electromagnetics.natural_source.Simulation1DPrimarySecondary(mesh, survey=None, sigmaPrimary=None, **kwargs)[source]#

Bases: SimPEG.electromagnetics.natural_source.simulation.Simulation1DElectricField

A NSEM problem solving a e formulation and primary/secondary fields decomposition.

By eliminating the magnetic flux density using

\[\mathbf{b} = \frac{1}{i \omega} \left(-\mathbf{C} \mathbf{e} \right)\]

we can write Maxwell’s equations as a second order system in \(\mathbf{e}\) only:

\[\left[ \mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^e } \mathbf{C} + i \omega \mathbf{M_{\sigma}^f} \right] \mathbf{e}_{s} = i \omega \mathbf{M_{\sigma_{s}}^f } \mathbf{e}_{p}\]

which we solve for \(\mathbf{e_s}\). The total field \(\mathbf{e} = \mathbf{e_p} + \mathbf{e_s}\).

The primary field is estimated from a background model (commonly half space ).

Attributes

sigmaPrimary

A background model, use for the calculation of the primary fields.

Methods

fieldsPair

alias of SimPEG.electromagnetics.natural_source.fields.Fields1DPrimarySecondary

getADeriv(freq, u, v[, adjoint])

The derivative of A wrt sigma

getRHS(freq)

Function to return the right hand side for the system.

getRHSDeriv(freq, src, v[, adjoint])

The derivative of the RHS wrt sigma