SimPEG.electromagnetics.frequency_domain.Simulation3DElectricField#

class SimPEG.electromagnetics.frequency_domain.Simulation3DElectricField(mesh, survey=None, forward_only=False, **kwargs)[source]#

Bases: SimPEG.electromagnetics.frequency_domain.simulation.BaseFDEMSimulation

By eliminating the magnetic flux density using

\[\mathbf{b} = \frac{1}{i \omega}\left(-\mathbf{C} \mathbf{e} + \mathbf{s_m}\right)\]

we can write Maxwell’s equations as a second order system in \(mathbf{e}\) only:

\[\left(\mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^f} \mathbf{C} + i \omega \mathbf{M^e_{\sigma}} \right)\mathbf{e} = \mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^f}\mathbf{s_m} - i\omega\mathbf{M^e}\mathbf{s_e}\]

which we solve for \(\mathbf{e}\).

Parameters

mesh (discretize.base.BaseMesh) – mesh

Methods

fieldsPair

alias of SimPEG.electromagnetics.frequency_domain.fields.Fields3DElectricField

getA(freq)

System matrix

getADeriv_mui(freq, u, v[, adjoint])

Product of the derivative of the system matrix with respect to the permeability model and a vector.

getADeriv_sigma(freq, u, v[, adjoint])

Product of the derivative of our system matrix with respect to the conductivity model and a vector

getRHS(freq)

Right hand side for the system

getRHSDeriv(freq, src, v[, adjoint])

Derivative of the Right-hand side with respect to the model.

getADeriv

Galleries and Tutorials using SimPEG.electromagnetics.frequency_domain.Simulation3DElectricField#

MT: 3D: Forward

MT: 3D: Forward

Heagy et al., 2017 Casing Example

Heagy et al., 2017 Casing Example