SimPEG.electromagnetics.frequency_domain.Simulation3DElectricField#
- class SimPEG.electromagnetics.frequency_domain.Simulation3DElectricField(mesh, survey=None, forward_only=False, **kwargs)[source]#
- Bases: - SimPEG.electromagnetics.frequency_domain.simulation.BaseFDEMSimulation- By eliminating the magnetic flux density using \[\mathbf{b} = \frac{1}{i \omega}\left(-\mathbf{C} \mathbf{e} + \mathbf{s_m}\right)\]- we can write Maxwell’s equations as a second order system in \(mathbf{e}\) only: \[\left(\mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^f} \mathbf{C} + i \omega \mathbf{M^e_{\sigma}} \right)\mathbf{e} = \mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^f}\mathbf{s_m} - i\omega\mathbf{M^e}\mathbf{s_e}\]- which we solve for \(\mathbf{e}\). - Parameters
- mesh (discretize.base.BaseMesh) – mesh 
 - Methods - fieldsPair- alias of - SimPEG.electromagnetics.frequency_domain.fields.Fields3DElectricField- getA(freq)- System matrix - getADeriv_mui(freq, u, v[, adjoint])- Product of the derivative of the system matrix with respect to the permeability model and a vector. - getADeriv_sigma(freq, u, v[, adjoint])- Product of the derivative of our system matrix with respect to the conductivity model and a vector - getRHS(freq)- Right hand side for the system - getRHSDeriv(freq, src, v[, adjoint])- Derivative of the Right-hand side with respect to the model. - getADeriv 
 
