SimPEG.electromagnetics.frequency_domain.simulation.BaseFDEMSimulation#
- class SimPEG.electromagnetics.frequency_domain.simulation.BaseFDEMSimulation(mesh, survey=None, forward_only=False, **kwargs)[source]#
- Bases: - SimPEG.electromagnetics.base.BaseEMSimulation- We start by looking at Maxwell’s equations in the electric field (\(\mathbf{e}\)) and the magnetic flux density (\(\mathbf{b}\)) \[\mathbf{C} \mathbf{e} + i \omega \mathbf{b} = \mathbf{s_m} {\mathbf{C}^{\top} \mathbf{M_{\mu^{-1}}^f} \mathbf{b} - \mathbf{M_{\sigma}^e} \mathbf{e} = \mathbf{s_e}}\]- if using the E-B formulation ( - Simulation3DElectricFieldor- Simulation3DMagneticFluxDensity). Note that in this case, \(\mathbf{s_e}\) is an integrated quantity.- If we write Maxwell’s equations in terms of \(\mathbf{h}\) and current density \(\mathbf{j}\). \[\mathbf{C}^{\top} \mathbf{M_{\rho}^f} \mathbf{j} + i \omega \mathbf{M_{\mu}^e} \mathbf{h} = \mathbf{s_m} \mathbf{C} \mathbf{h} - \mathbf{j} = \mathbf{s_e}\]- if using the H-J formulation ( - Simulation3DCurrentDensityor- Simulation3DMagneticField). Note that here, \(\mathbf{s_m}\) is an integrated quantity.- The problem performs the elimination so that we are solving the system for \(mathbf{e}\), \(mathbf{b}\), \(mathbf{j}\) or \(mathbf{h}\). - Attributes - If True, A-inverse not stored at each frequency in forward simulation. - The simulations survey. - Methods - Jtvec(m, v[, f])- Sensitivity transpose times a vector - Jvec(m, v[, f])- Sensitivity times a vector. - fields([m])- Solve the forward problem for the fields. - fieldsPair- alias of - SimPEG.electromagnetics.frequency_domain.fields.FieldsFDEM- getSourceTerm(freq)- Evaluates the sources for a given frequency and puts them in matrix form 
Galleries and Tutorials using SimPEG.electromagnetics.frequency_domain.simulation.BaseFDEMSimulation#
 
Heagy et al., 2017 1D RESOLVE and SkyTEM Bookpurnong Inversions
 
Heagy et al., 2017 1D RESOLVE Bookpurnong Inversion
 
 
 
 
 
 
